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bre todo por insistirme en elegir el área que me gusta. También agradezco al
profesor Rodolfo Conde, por motivarme a continuar en las matemáticas. De
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Chapter 1

Introduction

Let K a field. An algebraic affine variety is the set of points x ∈ Kn such
that fi(x) = 0 ∀i ∈ {1, . . . , n}, where f1, . . . , fn ∈ R = K [x1, . . . , xt]. Al-
gebraic geometry employs commutative algebra to study properties such as
dimension, irreducibility, and smoothness. In this work, we focus on smooth-
ness. A point where an algebraic variety is not smooth, or regular, is called a
singularity. In order to identify such points, we study the corresponding quo-
tient ring, R/I where I = 〈f1, . . . , fn〉. In prime characteristic p we employ
the Frobenius morphism

F : R→ R

r 7→ rp,

to detect, classify, and measure singularity.
If R is reduced, singularities are studied via a module of pe-roots R1/pe .

If R is not reduced, there a more general version of this module denoted by
F e
∗R. A celebrated theorem of Kunz [Kun69] establishes that R is regular if

and only if F e
∗R is faithfully flat for every e ≥ 1 (equivalently for some e ≥ 1).

This theorem opened the door to classify singularities via the structure of
F e
∗R as an R-module.

If F e
∗R is a finitely generated R-module, we say R is F -finite. In particular

for F -finite local rings, Kunz’s Theorem states that R is regular if and only
if F e

∗R is a free module. We say that R is strongly F -regular if the growth of
the free part of F e

∗R has the same rate as the grow of its rank (see Definition
4.4.1). A ring is F -split if F e

∗R has positive free rank. There are weaker
versions of this singularity considering purity of maps instead of free rank.
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These are called F -pure regularity and F -purity. These properties have been
mostly studied in Noetherian rings. Nonetheless, recently non-Noetherian
rings are being considered as well. In particular, Datta and Smith [DS16]
studied the behavior of Frobenius map in valuation domains (see Chapter
5). In this thesis we study this topic for both Noetherian and non Notherian
valuation domains. In particular, the main goal of this thesis is to give a
self-contained exposition of the following result.

Theorem 1.0.1 ([DS16], see Theorem 5.3.4). Let (V,m) be a discrete valu-
ation domain with F -finite fraction field. The following are equivalent

1. V is F -split;

2. V is F -finite;

3. V is F -regular.

To achieve our goal, we focus our attention on four objects: valuations,
valuation domains, Frobenius morphism, and their relation. We now present
a summary of each chapter of this thesis.

In Chapter 2, we recall some theorems which are used in certain proofs
throughout this thesis. References for these theorems are classical books in
commutative algebra [Eis95, Mat89, AM69].

Chapter 3 is devoted to study valuation domains and their associated val-
uations. In particular, we start with valuations and their properties. Later,
we define valuations domains and establish the bijection between these two
objects. At the end of this chapter, we show the existence of valuations.
This material is based on books in integral closure and commutative algebra
[HS06, Bou89].

In Chapter 4, we define the Frobenius homomorphism along with the
module F e

∗R and its equivalences. In addition, we study several types of
singularities according to the behavior of Frobenius map, and state properties
and relations among them. We define excellent rings and their relation with
Frobenius singularities. For instance, a Noetherian domain is F -finite if and
only if it is excellent and its fraction field is F -finite. References for this
chapter are notes in Frobenius and methods in prime characteristic [HR76,
Smi19].

In Chapter 5 we study valuation domains via Frobenius. By Kunz’s
Theorem, the Frobenius map is flat for valuation domains. Moreover, these
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domains are F -pure, and if the valuation domain is excellent and Noethe-
rian, it is also F -split. Hochster and Huneke [HH89a] introduced strongly
F -regularity which is only defined for Noetherian rings. Datta and Smith
[DS16] introduced a more general concept called F -pure regularity. A valu-
ation domain is F -pure regular if and only if it is Noetherian,. Therefore in
the Noetherian case both definitions are equivalent. Finally, we include an
example from the paper [DS16] to illustrate that not every valuation domain
is F -split (see Example 5.3.7). In particular, there exists a ring that is not
F -finite, nor excellent, nor F -regular.
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Chapter 2

Background

Troughout this section we give facts used in certain proofs of this work.
However, we don’t demonstrate each of them since they can be found in
many references [Eis95, Mat89, AM69]. First we start by giving theorems
which we use in Chapter 3, then theorems used in Chapter 4, finally, theorems
used to study Frobenius on valuation rings in Chapter 5. First, we need some
definitions.

From algebraic geometry we know that there exists a correspondence
between points in C and maximal ideals in C [x]. This idea can be taken to
any ring through the following definition.

Definition 2.0.1. Let A be a ring. We define the prime spectrum of A
as the set

SpecA = {P ⊆ A | P prime ideal of A} .

Remark 2.0.2. Lat A be a ring and I an ideal of A. Then we consider the
set

V (I) = {P ∈ SpecA | I ⊆ P} .
Consider a family of ideals {Iλ}λ∈Λ. Then

∩λ∈ΛV (Iλ) = V

(∑
λ∈Λ

Iλ

)
.

Moreover is I1, . . . , In are ideals, we have that

∪ni=1V (Ii) = V (I1 ∩ · · · ∩ In) .

Therefore, SpecA is a topological space where V (I) is a closed set ∀I ideal.
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Definition 2.0.3. Let R be a ring. We say R is normal if it is reduced and
every element of the fraction field of R, Frac (R), that is integral over R is
in R.

If R is a domain, then the integral closure of Frac (R) is its normalization.
This means that we can always get a normal ring out of a domain. We show
an example of this.

Example 2.0.4. Consider the ring R = C [t2, t3]. We have that R ∼= C[x,y]
(x3−y2)

.

Note that the equation f (x) = x3 − y2 is de cusp in R2.
We have that R is not normal since the element t is a integral element

over R. Therefore R = C [t]. The map

R ↪→ R,

induces a map
C→ V (f)

sending the i-axis to the cusp.

The normalization of a domain preserves properties of the domain. For
example, consider a domain R. If R is a K-algebra finitely generated, with
K a field, then

dimR = dimR.

To understand this, the following theorem is useful.

Theorem 2.0.5 (Lying over and going up). Suppose R ⊆ S is an integral
extension of rings. Given a prime P ⊆ R, there exists a prime Q ⊆ S with
R ∩ Q = P . Moreover, Q may be chosen to contain any given ideal Q1

satisfying the condition R ∩Q1 ⊂ P .

Now we give some definitions in order to talk about Cohen-Macaulay
rings.
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Definition 2.0.6. Let R be a ring and P be a prime ideal. The height of P ,
denoted htP , is the supremum of lengths of finite strictly ascending chains
of prime ideals contained in P .

Definition 2.0.7. Let R be a ring, M be a finitely generated module and
I be an ideal such that IM 6= M . Then the depth of I on M , denoted
depth (I,M), is the length of a maximal M-sequence in I.

Definition 2.0.8. Let (R,m) be a local ring. Then R is said to be Cohen-
Macaulay is depthm = htm.

Furthermore we talk about local rings whose number generators of the
maximal ideal is equal to the dimension.

Definition 2.0.9. Let (R,m) a Noetherian local ring of dimension d. Then
we say that R is regular if m can be generated by exactly d elements.

Remark 2.0.10. We have that a regular Noetherian local ring is an integral
domain. In addition the localization at any prime ideal is also regular. If
K is a prefect field then any finitely generated K-algebra is regular, in this
context we can say R is smooth.

An example of a regular ring is the ring of formal power series. Moreover,
Cohen structure theorem states that any regular ring is isomorphic to the
ring of formal power of series.

Remark 2.0.11. Every regular ring is Cohen-Macaulay. Any quotient of
regular ring with a regular sequence is also Cohen-Macaulay

Serre stated some equivalences for a ring to be normal. In order to do
this, he defined the following conditions.

Definition 2.0.12. Let A be a Noetherian ring. Then we say that A satisfies

• the condition (Ri) if AP is regular for every P ∈ Spec (A) with htP ≤ i;

• the condition (Si) if depthAP ≥ min (htP, i) for every P ∈ Spec (A).

We use a particular version of these equivalences.

Theorem 2.0.13. A Noetherian ring is normal if and only if it satifies the
Serre’s condition (R1) and (S2).
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Note that if the ring is normal with dimension 1, then it is regular. More-
over, if the dimension is 2, then the ring is Cohen-Macaulay. In addition,
Hochster and Huneke [HH89b] proved that if R is (S2), then Spec (R)\V (I)
is connected for every ideal I such that dim (V (I)) ≤ dim (R)− 2.

The following theorem is a well-known fact about finite ring extensions.

Theorem 2.0.14. If R ⊆ S are rings such that S is finitely generated as
R-module, then dimR = dimS.

Krull stated the following theorem. In Chapter 3 we consider a local ring
and we apply it to its maximal ideal.

Theorem 2.0.15 (Krull intersection theorem). Let I ⊆ R be an ideal in a
Noetheran ring R. If M is a finitely generated R-module, then there is an
element r ∈ I such that (1− r) (∩∞1 IjM) = 0. If R is a domain or a local
ring, and I is a proper ideal, then

∞⋂
1

Ij = 0.

Before giving the next theorem, we need to know what the associated
graded ring of an ideal is.

Definition 2.0.16. Let R be a ring and, I an ideal. The associated graded
ring of I is

grI (R) = ⊕n≥0

(
In/In+1

)
.

If R is a Noetherian local ring with maximal ideal m, the fiber cone of I is
the ring

FI (R) =
R

m
⊕ I

mI
⊕ I2

mI2
⊕ · · ·

The dimension of FI is called the analytic spread of I.

Now, we consider when do we have the equality between the dimension
of the fiber cone and the dimension of the associated graded ring.

Theorem 2.0.17. For any ideal I in a local ring (R,m),

dimFI ≤ dim(grI(R)) = dimR.

Furthermore, if m is the maximal ideal in grI(R) consisting of all elements
of positive degree of m/I, then

dim(grI(R)) = htm.
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Taking some elements in a ring, The Principal Ideal Theorem gives us
information about the height of a minimal prime containing these elements.

Theorem 2.0.18 (Principal Ideal Theorem). Let R be a Noetherian ring. If
x1, . . . , xc ∈ R and P is minimal among primes of R containing x1, . . . , xc,
then codimP ≤ c.

Krull and Akizuki stated that the integral closure of a Noetherian ring is
also Noetherian in the case of finite extensions of one dimensional rings.

Theorem 2.0.19 (Krull-Akizuki Theorem). If R is a one-dimensional Noethe-
rian domain with quotient field K and L is a finite extension field of K, then
any subring S of L that contains R is Noetherian, of dimension at most 1,
and has only finitely many ideals containing a given nonzero ideal of R. In
particular, the integral closure of R in L is Noetherian.

Although Nakayama’s Lemma has many versions, we work with the fol-
lowing one.

Theorem 2.0.20 (Nakayama’s Lemma). Let (R,m, K) be a local ring. Given
a finitely generated R-module M , note that M/mM is a finitely dimensional
vector space over K. Then a given set of elements {x1, ..., xn} ⊆ M is
a minimal generating set for M if and only if their classes {x̄1, ..., x̄n} in
M/mM are a K-vector space basis.

Cohen [Coh46] gave an explicit way to describe complete Noetherian local
rings.

Theorem 2.0.21 (Cohen Structure Theorem). Suppose that (R,m, K) is a
complete local Noetherian ring containing any field. Then R contains a field
isomorphic to its residue field and

R ∼= K[[x1, ..., xn]]/I

for some ideal I. The power series variables xi can be taken to be minimal
generators of the maximal ideal. Furthermore, if R is regular then

R ∼= K[[x1, ..., xn]].

The Prime Avoidance Theorem provides us a way to take elements outside
certain prime ideals.
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Theorem 2.0.22 (Prime Avoidance Theorem). Suppose that I1, . . . , In, J
are ideals of a ring R, and suppose that J ⊂ ∪jIj. If R contains an infinite
field or if at most two of the Ij are not prime, then J is contained in one of
the Ij.

The following theorem relates a finitely generated module with its local-
ization at maximal ideal. It is also an example of the Local-Global Principle
in commutative algebra.

Theorem 2.0.23. A finitely generated module in a commutative ring is zero
if and only if it is zero in the localization at every maximal ideal.

Next theorem identifies whether a homomorphism is a monomorphism or
not based on its localization at maximal ideals.

Theorem 2.0.24. If ϕ : M → N is a map of R.modules, then ϕ is a
monomorphism (or ephimorphism or isomorphism) if and only if for every
maximal ideal m of R the localized map ϕm : Mm → Nm is a monomorphism
(or ephimorphism or isomorphism).

Now we relate the property of splitting and the dual of a module.

Theorem 2.0.25. Consider the R-module homomorphism

σ : R→M
1 7→m.

Then σ splits if and only if the natural R-module map

ψ : Hom (M,R)→R
φ 7→φ (m)

is surjective.

Whenever we have a finite integral extension of domains, there exists a
nonzero homomorphism going backwards. This is stated is the next theorem.

Theorem 2.0.26. If B ↪→ R is a finite integral extension of domains, then
there exists φ ∈ HomB (R,B) such that φ (1R) 6= 0.

The next theorem states that a union of subgroups in a directed system
is isomorphic to its direct limit, under certain conditions.
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Theorem 2.0.27. Let G be a group and {Gi}i∈I a collection of subgroups
which form a directed system over a directed set I, that is i ≤ j if and only
if there exists a map

ϕi,j : Gi ↪→ Gj.

Then lim
→
Gi
∼= ∪i∈IGi.
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Chapter 3

Valuation domains

Our goal is to understand the Frobenius morphism in valuation domains.
However, before studying these rings, we check on a specific kind of maps
called valuations. As one may think, they are strongly related with valua-
tion domains. This relation is established in Section 2.2. In Section 2.3 we
give some properties of valuation rings. Finally, the last section states their
existence in both Noetherian and non-Noetherian cases.

3.1 Valuations

Valuations are group maps with an additional property. Afterwards, we
mention different examples, and how to create a partition out of this set of
homomorphisms.

Definition 3.1.1. Let K be a field and G be a totally ordered Abelian group.
A valuation on K or a K-valuation is a group homomorphism

v : K∗ → G,

with the property

v (x+ y) ≥ min {v(x), v(y)} ∀x, y ∈ K∗, (3.1)

where K∗ := K − {0}. Furthermore, let L ⊆ K be a field extension. We
say that v is a valuation on K/L, if v(r) = 0, ∀r ∈ L.

Remark 3.1.2. From the properties of group homomorphisms, we get that
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1. v(1) = 0

2. v (x−1) = −v(x) ∀x ∈ K∗

This definition can be extended to domains, we can consider a domain as
follows.

Remark 3.1.3. Let R be a domain with field of fractions K, G be a totally
ordered group and

v : R \ {0} → G

be a function such that

1. v(xy) = v(x) + v(y) ∀x, y ∈ R,

2. v (x+ y) ≥ min {v(x), v(y)} ∀x, y ∈ R.

Then v can be extended uniquely to a valuation on K as follows:

ṽ : K∗ −→ G
x

y
7−→ v(x)− v(y).

That’s why we also call v a valuation.

Example 3.1.4. Consider Z, p a prime number, and the function

vp : Z→ Z
m 7→ vp(m) = r,

where r is the biggest power of p that divides m. First note that

vp(m+ n) ≥ min {v(m), v(n)} .

Indeed, let vp(m) = r, vp(n) = s and t = min {r, s}. We have that

pt|m and pt|n⇒ pt|(n+m)

⇒ t ≤ max {u ∈ Z | pu|(m+ n)}
⇒ t ≤ vp(m+ n).

Now we prove that vp(mn) = vp(m)+vp(n). Let vp(m) = r and vp(n) = s.
Then pr+s|mn, and pr+s−1 - mn . Suppose that there exists an element
u > r + s such that pu|mn. Since vp(m) = r, we get that pu−r|n which is a
contradiction. We conclude that vp is a Z-valuation.
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Lemma 3.1.5. Let K be a field and v a K-valuation. Then

v(y) = v(−y)

for all y ∈ K∗.

Proof. First we show that v(1) = v(−1).

v(1)−v(−1) = v(1(−1)−1) = v(−1)⇒ −v(−1) = v(−1)⇒ v(−1) = 0 = v(1)

Now, we get that

v(1) = v(−1)⇒ v(y) + v(1) = v(y) + v(−1)

⇒ v((y)(1)) = v((y)(−1))

⇒ v(y) = v(−y).

�

We extend the Property 3.1 for more than just two elements.

Theorem 3.1.6. Let K be a field, x1, ..., xn ∈ K, and v a K − valuation.
Then,

1. v

(
n∑
i=1

xi

)
≥ min {v (x1) , ..., v (xn)}

2. If v (xi) are all distinct, then v

(
n∑
i=1

xi

)
= min {v (x1) , ..., v (xn)} .

Proof.

1. We proceed by induction. Note that the case n = 2 is the Property 3.1.
Now, suppose it holds for n−1 elements. Let min {v (x1) , ..., v (xn−1)} =
v(xj), for some j. Thus,

v

(
n∑
i=1

xi

)
≥ min

{
v

(
n−1∑
i=1

xi

)
, v (xn)

}
≥ min {v(xj), v(xn)}
= min {v (x1) , ..., v (xn)} .

15



2. We proceed by induction on n. We first assume that n = 2. Since
G is totally ordered, we can assume without loss of generality that
v(x2) < v(x1). If v(x1 + x2) > v(x2), then

v (x2) < min {v (x1) , v (x2)} = v (x2) ,

which is a contradiction. Hence v(x1 + x2) = v(x2).

Now suppose the claim holds for n−1 elements, and prove it for n. We
consider two cases. If v(

∑n−1
i=1 xi) > v(xn), then v(

∑n
i=1 xi) ≥ v(xn).

We proceed by contradiction. Suppose that v(
∑n

i=1 xi) > v(xn). We
have

v (xn) < min

{
v

(
n−1∑
i=1

xi

)
, v (xn)

}
= v (xn) ,

which is a contradiction.

On the other hand, if v(xn) > v
(∑n−1

i=1 xi
)
, then

v

(
n∑
i=1

xi

)
≥ v

(
n−1∑
i=1

xi

)
.

We proceed by contradiction. Supposed that v (
∑n

i=1 xi) > v
(∑n−1

i=1 xi
)
.

Thus,

v

(
n−1∑
i=1

xi

)
< min

{
v

(
n−1∑
i=1

xi

)
, v (xn)

}
= v

(
n−1∑
i=1

xi

)
,

which is also a contradiction.

�

We now define a valuation over a polynomial ring, this map will depend
on the values assigned to the variables.

Definition 3.1.7. Let K be a field, and v a valuation on the field of fractions
of the polynomial ring K [x1, ..., xn]. The valuation is said to be monomial
with respect to x1, ..., xn if for any polynomial f =

∑m
j=0 rjx

j, we get

v(f) = min
{
v(rjx

j) | ∀j = 0, ..,m
}
.
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Remark 3.1.8. A monomial valuation is uniquely determined by the values
of x1, ..., xn.

Example 3.1.9. Let K be a field and v a K(x, y)-valuation such that v(x) =√
2 and v(y) = 1.

Note that a monomial xiyj, i, j ∈ Z+, has value at least n if and only if
i
√

(2) + j ≥ n. This is because v is a valuation, and so

v(xiyj) = v(xi) + v(yj)

= iv(x) + jv(y)

= i
√

2 + j.

Then, i
√

2 + j ≥ n

Now, we give a name to the image of valuations.

Definition 3.1.10. Let K be a field and v a K-valuation. Then the im-
age Γv = v(K∗) of v is a totally ordered Abelian group. This is called
the value group of v.

Definition 3.1.11. Let K be a field. We say that valuations

v : K∗ → Γv and w : K∗ → Γw

are equivalent if there exists an order preserving group isomorphism

ϕ : Γv −→ Γw

such that the following diagram commutes

K Γv

Γw

v

w
ϕ

This definition gives the partition we mention at the begining of this
Section.

Example 3.1.12. Let K be a field and v : K∗ → Z. Let x, y ∈ K∗.
Suppose v(x) < v(y). Thus, v(x + y) ≥ v(x) and 2v(x) < 2v(y), and so
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2v(x + y) ≥ 2v(x) = min {2v(x), 2v(y)}. This shows that 2v is a valuation
and that it preserves order. Consider the function

ϕ : Im(v)→ Im(2v)

v(x) 7→ 2v(x),

which is well-defined. Since

ϕ(v(x) + v(y)) = 2(v(x) + v(y))

= 2v(x) + 2v(y)

= ϕ(v(x)) + ϕ(v(y)),

ϕ is an homomorphism. Now we prove that it is injective:

ϕ(v(x)) = ϕ(v(y))⇒ 2v(x) = 2v(y)

⇒ v(x) = v(y).

Finally, suppose y ∈ Im(2v). Then there exists an element x ∈ K∗ such
that 2v(x) = y. Therefore there exists v(x) ∈ Im(v) such that ϕ(v(x)) =
2v(x) = y. We conclude that ϕ is an isomorphism. Then v is equivalent to
2v.

3.2 Valuation rings

Now we define valuation domains. In addition, we gradually explain the
reason why we studied first valuation maps, this is, we prove the relation
between valuations and valuation domains.

Definition 3.2.1. Let K be a field. A K-valuation domain is an integral
domain V whose field of fractions is K and satisfies the property that, for
every non-zero element x in K, either x ∈ V or x−1 ∈ V .

If it is clear from the context, we omit K.

Example 3.2.2. Let K = Q and p be a fixed prime. We prove that the set

R =
{
pr
m

n
∈ Q | r ≥ 0, p - m and p - n

}
,

is a valuation domain.

18



Let
r

s
∈ Q be such that (r, s) = 1. Suppose

r

s
/∈ R. We show that

s

r
∈ R.

In the case that p - r and p - s,
s

r
=
p0s

r
∈ R. Now consider the case when p

divides either r or s. Note that if p | r, then there exist n, t ∈ Z such that

r = pnt and p - t. Thus
r

s
=
pnt

s
∈ R which is a contradiction.

We have that p | s, and thus there exist m, t ∈ Z such that s = pmt and

p - t. Hence,
s

r
=
pmt

r
∈ R.

Proposition 3.2.3. Let V be a valuation domain. The set of ideals in V is
totally ordered by inclusion.

Proof. Let I, J ⊆ V be ideals and x ∈ I \ J . For every element y ∈ J \ {0},
x

y
∈ K. As V is a valuation domain,

x

y
∈ V or

y

x
∈ V . If

x

y
∈ V , then

x =

(
x

y

)
y ∈ J , which is a contradiction. Hence,

y

x
∈ V . This implies that

y =
(y
x

)
x ∈ I. We conclude that J ⊆ I. �

Theorem 3.2.4. Let V be a valuation domain. Then V has a unique maxi-
mal ideal

mv =
{
x ∈ V | x = 0 or x−1 /∈ V

}
.

Proof. First we show that mv is an ideal. It is a subgroup, because 0 ∈ mv,
and x, y ∈ mv implies x − y ∈ mv. Now consider x ∈ mv and z ∈ V . We
prove that xz ∈ mv by contradiction. If xz /∈ mv, then (xz)−1 = x−1z−1 ∈ V .
This implies that (x−1z−1) z = x−1 ∈ V , and thus xz ∈ mv.

To show that mv is maximal, suppose that there exists an ideal I such
that mv ⊆ I ⊆ R and mv 6= I. Let x ∈ I \ mv. Then x−1 ∈ V , and so
xx−1 ∈ I. Hence I = R. Finally, since the ideals in V are totally ordered,
mv is the unique maximal ideal. �

Remark 3.2.5. Given a valuation we get a valuation domain as follows. Let
v : K∗ → G be a valuation, and define the set

Rv = {r ∈ K∗ | v(r) ≥ 0} ∪ {0} .

Note that

• 0 ∈ Rv;
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• if r, s ∈ Rv, then v(r − s) = min {v(r), v(s)} ≥ 0. Thus r − s ∈ Rv;

• 1 ∈ Rv, because v(1) = 0;

• if r, s ∈ Rv, then v(rs) = v(r) + v(s) ≥ 0. Thus rs ∈ Rv.

We deduce that Rv is a subring of K∗. Furthermore, it is an integral domain.
Indeed, suppose there exist elements r, v ∈ Rv such that rv = 0, and r 6= 0.
As r ∈ K∗, we get that v = 0. Now consider the set

mv = {r ∈ K∗ | v(r) > 0} ∪ {0} .

It follows that

1. 0 ∈ mv;

2. if r, s ∈ mv, then v(r − s) = min {v(r), v(s)} > 0, and so r − s ∈ V ;

3. if y ∈ Rv, and r ∈ mv, then v(yr) = v(y) + v(r) > 0, and so yr ∈ mv.

Thus mv is an ideal of Rv. We prove that it is the unique maximal ideal.
Let I be an ideal such that mv ⊆ I ⊆ R. Suppose that mv ( I. Then there
exists y ∈ I such that v(y) = 0. We get that y−1 ∈ Rv. Thus 1 ∈ I. We
conclude that mv is maximal. Suppose that Q is a maximal ideal of Rv and
consider x ∈ Q. Then,

• if v(x) = 0, we get that x−1 ∈ Rv. Thus 1 ∈ Q, which is a contradiction,

• if v(x) > 0, then x ∈ mv. Thus Q ⊆ mv, and so Q = mv.

Hence, mv is unique. Finally, we prove that Rv is a valuation domain. Let
x ∈ K. If x = 0, then x ∈ Rv. If x is a non-zero element, then v(x) < 0 or
v(x) ≥ 0. When v(x) < 0, we get that x−1 ∈ Rv. On the other hand, we
have that x ∈ Rv, if v(x) ≥ 0.

Remark 3.2.6. If v and w are equivalent valuations, then there exists an
order-preserving isomorphism

ϕ : Γv → Γw

20



such that ϕ(v(x)) = w(x), ∀x ∈ K∗. Thus

x ∈ Rv ⇔ v(x) ≥ 0

⇔ ϕ−1(w(x)) ≥ 0

⇔ w(x) ≥ 0

⇔ x ∈ Rw

Therefore, Rv = Rw.

Definition 3.2.7. The valuation domain Rv from Remark 3.2.5 is called the
valuation ring corresponding to the valuation v and its residue field
is denoted by K(v).

Theorem 3.2.8. Let V be a valuation domain with field of fractions K,

Γv =
K∗

V ∗
, where V ∗ ⊆ K∗ is the multiplicative group of units of V . Let

v : K∗ → Γv

be the natural group homomorphism. Then Γv is a totally ordered Abelian
group, v is a K-valuation, and Γv is the value group of v.

Proof. As K∗ is an Abelian group under multiplication, Γv is also Abelian.
Let x, y ∈ K. We define the relation in Γv

[x] ≤ [y]⇔ yx−1 ∈ V.

We prove that it is well definied. If x ∼ y, where ∼ is the relation in the
quotient, then xy−1, yx−1 ∈ V ∗. We get that [x] = [y].

Now we show that Γv is totally ordered. If [a] , [b] ∈ Γv, then a, b ∈ K.
We get that ab−1 ∈ V or ba−1 ∈ V . Thus [a] ≤ [b] or [b] ≤ [a]. We conclude
that Γv is totally ordered.

Now we prove that v is a K-valuation. We know that v(xy) = v(x) +
v(y), because v is a group homomorphism. We check that v(x + y) ≥
min {v(x), v(y)}. Let x, y ∈ K∗. Then, xy−1 ∈ V or yx−1 ∈ V . Suppose
without loss of generality that xy−1 ∈ V , then (x + y)y−1 = xy−1 + 1 ∈ V .
Thus v(x+ y) ≥ v(y) ≥ min {v(x), v(y)}.

As v is surjective, we conclude that Γv is the value group of v.
�
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Definition 3.2.9. The valuation map obtained from Theorem 3.2.8 are called
associated valuation to the valuation domain V .

Remark 3.2.10. In Definition 3.2.9, the valuation map is unique up to
isomorphism.

Proposition 3.2.11. If V is a K-valuation domain and v is the valuation
obtained from V , then the valuation ring of v is V .

Proof. We show that V = Rv. Let x ∈ V . Then x ∈ K, and so v(x) ≥ 0 or
v(x) < 0. In the first case, x ∈ Rv. Note that if v(x) < 0, then v(x) < v(1).
Thus x−1 ∈ V , because of the order we defined in Γv, which is a contradiction.
We conclude that x ∈ Rv.

Now, let x ∈ Rv. Then x ∈ K and v(x) ≥ 0. As V is a valuation domain,
thus x ∈ V or x−1 ∈ V . If x /∈ V , then x−1 ∈ V . Since v(x−1) < 0, we obtain
v(x−1) < v(1). Therefore x ∈ V , which is a contradiction. We conclude that
x ∈ V

�

Proposition 3.2.12. Let v be a K-valuation and Rv the corresponding val-
uation domain. Then the associated valuation to Rv is equivalent to v.

Proof. Let w be the associated valuation to Rv. Consider the map

ϕ :
K∗

R∗v
→ Γv

[r] 7→ v (r) .

Note that it is well defined. If r, s ∈ K∗ are elements such that r ∼ s, then
rs−1 ∈ R∗v. Therefore,

0 = v
(
rs−1

)
= v (r)− v (s) .

This is v (r) = v (s). Moreover, ϕ is a group homomorphism.We have that

ϕ ([rs]) = v (rs)

= v (r) + v (s)

= ϕ ([r]) + ϕ ([s]) .

It is also order preserving. Let [r] , [s] ∈ K∗

R∗v
be such that [r] < [s]. Suppose

v (s) < v (r). Then v (r) − v (s) > 0, this implies that v (rs−1) = 0. Thus
rs−1 ∈ R∗v, and so [s] ≤ [r], which is a contradiction. Therefore v (s) > v (r).
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Now, if g ∈ Γv. Then there exists r ∈ K∗, such that x = v (r). Therefore
ϕ ([r]) = v (r) = x. This is, ϕ is surjective. In addition, if r, s ∈ K∗

are elements such that v (r) = v (s), then v (rs−1) = 0. This implies that
rs−1 ∈ R∗v. Thus, r ∼ s. We conclude that ϕ is inyective, and so an order
preserving group isomorpshim. Finally, note that

v = ϕ ◦ w.

We conclude that v and w are equivalent.
�

Corollary 3.2.13. There is a bijection between K-valuation domains and
equivalence classes of K-valuations.

Proof. Let D denote the set of valuation domains and M the set of equiva-
lence classes of K-valuations. Define

ϕ : M → D

v 7→ Rv

Note that ϕ is well-defined by Theorem 3.2.11. Consider the map

θ : D →M

V 7→ v,

where v is the associated valuation to V . By Theorem 3.2.11, ϕ ◦ θ = IdD.
On the other hand by Theorem 3.2.12, θ ◦ ϕ = IdM . �

Now that we have the relation we were seeking, we use both indistinctively
throughtout the rest of this work. In addition, we refer as Rv and Γv the
valuation domain of the valuation v and its valuation group, respectively.

Proposition 3.2.14. Let v be a valuation over a field K. Then valuation of
a unit in Rv is 0.

Proof. Let a be a unit in Rv. Then v (a) ≥ 0. Since a−1 ∈ Rv, v (a−1) =
−v (a) ≥ 0, we conclude that v (a) = 0. �

Proposition 3.2.15. Let v be a valuation over a field K. Then v (Q) = 0.
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Proof. First we prove that if n ∈ Z, then v(n) = 0. We have that for
1

n
,

v

(
1

n

)
=v

 1

1 + · · ·+ 1︸ ︷︷ ︸
n times


=v

(
1

1
+ · · ·+ 1

1

)
≥0.

Hence, v(n) = 0. Now, v

(
p

q

)
= v (p) + v

(
1

q

)
= v

(
1

q

)
. Finally,

v

(
1

q

)
= 0, because q ∈ K. �

We introduce a kind of groups we often use.

Definition 3.2.16. Let Γ be a totally ordered Abelian group. We say that Γ
is Archimedean, if for any elements g, h ∈ Γ such that g > 0, there exists
a positive integer n such that ng > h.

Theorem 3.2.17 (Hölder). Let Γ be a totally ordered Abelian group that is
Archimedean. Then Γ is isomorphic to a subgroup of R.

Proof. Let a ∈ Γ be fixed positive. Therefore for any b ∈ Γ be positive
consider the set

Sb = {r ∈ Q| ra ≤ b}

Note that Sb is not empty because Γ is Archimedean. In fact, there exists

z ∈ N such that zb > a, and consequently
1

z
∈ Sb. Furthermore, as Γ is

Archimedean, there exists n ∈ N such that b < na. Let r ∈ Sb. If r < n,
then ra < na. Therefore, b < ra < na ≤ b, which is a contradiction. We get
that Sb is bounded by n. Thus Sb has a supremum. Define ϕ : Γ→ R by

• ϕ(0) = 0,

• ϕ(b) = supSb, if b > 0,

• ϕ(−b) = −ϕ(b), if b < 0.
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We show that ϕ is a homomorphism. Let b, c ∈ Γ be positive elements and

A = {m+ n| m ∈ Sb, n ∈ Sc} .

As A ⊆ S(b+c), then supA = supSb + supSc ≤ supS(b+c), and so, ϕ(b) +
ϕ(c) ≤ ϕ(b + c). Now we proceed by contradiction, suppose that ϕ(b) +
ϕ(c) < ϕ(b + c). Thus there exists r, s ∈ Q such that ϕ(b) < r, ϕ(c) <
s, and r + s < ϕ(b + c). Then (r + s)a ≤ b + c ≤ ra + sa, which is a
contradiction. Thus, ϕ(b) + ϕ(c) = ϕ(b + c). If b and c are both negative,
then ϕ(−b) + ϕ(−c) = ϕ(−(b+ c)). Thus,

ϕ(b) + ϕ(c) = −(ϕ(−b) + ϕ(−c))
= −ϕ(−(b+ c))

= ϕ(b+ c).

Let b, c > 0, p = supSb, q = supSc, and r = supSb−c. Since pa ≤ b and
qa ≤ c, we get that (p − q)a ≤ b − c. Thus, p − q ≤ r. Since p − q ∈ Sb−c,
p− q = r, we have, ϕ(b)− ϕ(c) = ϕ(b− c). Suppose b is a positive element
and c is a negative element. Then −c > 0. Thus,

ϕ(b) + ϕ(c) = ϕ(b)− (−ϕ(c))

= ϕ(b)− ϕ(−c)
= ϕ(b− (−c))
= ϕ(b+ c).

Now we show that ϕ preserves inequalities. First, suppose b < 0. Then, there

exists m ∈ N such that a < mb. Thus
1

m
∈ Sb. We get that 0 <

1

m
≤ ϕ(b).

Now if c < b, then Sc 6= Sb, so supSc < supSb. We conclude that ϕ(c) < ϕ(b).
Finally, we prove that ϕ is injective. Let x, y ∈ Γ be such that x 6= y. Then
x < y or y < x. Without loss of generality suppose x < y. Thus, ϕ(x) < ϕ(y)
This means that ϕ(x) 6= ϕ(y). Therefore, ϕ is injective. As ϕ is surjective
over its image, it is isomorphic to a subgroup of R. �

3.3 Properties of valuation domains.

Theorem 3.3.1. Every valuation domain is integrally closed.
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Proof. Let x ∈ Frac(V ) be such that it satifies a polynomial with coefficients
in V , i.e.,

xn + r1x
n−1 + ...+ rn = 0.

Suppose that x /∈ V . Then x−1 ∈ V . Thus we have that

x−n
(
xn + r1x

n−1 + ...+ rn
)

= 0⇒ 1 + r1x
−1 + ...+ rnx

−n = 0

⇒ 1 ∈ x−1V

⇒ x ∈ V,

which is a contradiction. We conclude that x ∈ V , and so, V = Frac(V )
�

Remark 3.3.2. Let V be a K-valuation ring and A be a ring such that
V ⊆ A ⊆ K. If x ∈ K, then x ∈ V ⊆ A or x−1 ∈ V ⊆ A. Thus A is also a
K-valuation ring.

In addition, if we take an element y ∈ mA such that y /∈ mV , then y−1 ∈
V ⊆ A, which is a contradiction. Therefore, mA ⊆ mV , and mA ∈ Spec(V ).
Moreover, consider the localization VmA

⊆ A. Let x ∈ A \ V . Then x−1 ∈ V
and x−1 /∈ mA, so it is a unit in V . We conclude that VmA

= A.

Proposition 3.3.3. Let V be a K-valuation ring and let

C = {A ring | V ⊆ A ⊆ K} .

Then the map

θ : Spec (V )→ C

P 7→ VP

is a order-reversing bijection. Hence, the set of subrings such that V ⊆ A ⊆
K is totally ordered by inclusion.

Proof. Consider the map

ψ : C → Spec (V )

A 7→ mA.

We show that θ ◦ ψ = IdC and ψ ◦ θ = IdSpec(V ).
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Let P ∈ Spec (V ), and A = VP . By Remark 3.3.2, mA = P . We have
that

(ψ ◦ θ) (P ) = ψ (VP )

= P,

and

(θ ◦ ψ) (A) = ψ (mA)

= VmA

= A.

By Remark 3.3.2, the bijection is order-reversing. The last part follows from
Proposition 3.2.3. �

Proposition 3.3.4. Let V be a K-valuation domain.

1. Every finitely generated ideal of V is principal.

2. If for some x, y ∈ V , (x, y)V 6= yV , then ∀r ∈ V , (x− ry)V = (x, y)V .

Proof.

1. Let I be an ideal of V and G = {x1, x2, ..., xn} be a generating set of
I. We proceed by induction on n. In the case n = 1, we have that
I = 〈x1〉. Now, take n = 2, and consider G = {x, y}. Since x, y ∈ K,
xy−1 ∈ V or yx−1 ∈ V . Thus (xy−1)y = x ∈ yV or (yx−1)x ∈ xV , and
therefore I is principal. We get that |G| = 1.

Now suppose this holds for n − 1. Let H = {x1, x2, ...xn−1}. Then
there exists m ∈ {1, 2, ..., n− 1} such that 〈H〉 = xmV . Then 〈G〉 =
〈H〉 + xnV = xmV + xnV . Applying the case n = 2, we get that
〈G〉 = xkV for some k ∈ {n,m}.

2. Since (x, y)V 6= yV , we have that x /∈ yV and x 6= 0. If y = 0, then
(x−ry)V = xV = (x, y)V , ∀r ∈ V . Now, consider y 6= 0. Since (x, y)V
is finitely generated, y ∈ xV . Therefore, (x − ry)V ⊆ xV . Moreover,
there exists s ∈ V such that y = sx. Thus x−ry = x−rsx = (1−rs)x,
and (x− ry)V = (1− rs)xV . Note that s is not a unit in V ; otherwise
x = s−1y, which is a contradiction. Thus, 1 − rs in a unit in V , this
∀r ∈ V . Hence x = (1− rs)(1− rs)−1x.
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Lemma 3.3.5. Let R be a ring, I be an ideal of R and V1, ..., Vn be valuation
domains that are R-algebras. Assume that for each j = 1, ..., n IVj is a
principal ideal.

1. There exist m ∈ N>0 and x ∈ Im such that ∀i xVi = ImVi.

2. For i = 1, .., n let mi be the maximal ideal Vi. Assume that R contains
units u1, ..., un−1 with the property that modulo each mi ∩ R all ui are
disticnt. Then there exists an element x ∈ I such that ∀i = 1, ..., n,
xVi = IVi.

Proof.

1. We proceed by induction. We first consider the case n = 1. Take
m = 1 and apply the Proposition 3.3.4. Now, suppose our claim holds
for n− 1. By the case n = 1, we get that for all i ∈ 1, ..., n there exist
mi ∈ N>0 and an element xi ∈ Imi such that ∀i 6= j xiVj = ImiVj.

Define m =
∏n

i=1 mi, ri = m
mi

, and x =
∑n

j=1 x
r1
1 ...x̂

rj
j ...x

rn
n , where x̂

rj
j

means the element x
rj
j is removed. Note that x ∈ Im(n−1). Since Im(n−1)

is an ideal of R, we get that Im(n−1)Vi is an ideal for all i. Thus by
Proposition 3.3.4, xVi = Im(n−1)Vi, ∀i.

2. We proceed by contradiction. Consider the case n = 1. There are no
such units, so we can apply the Proposition 3.3.4. Now, suppose our
claim holds for n − 1, we show that it holds for n. We may assume
that there exist x, y ∈ I such that for all 1 ≤ i < n and 1 < j ≤ n,
xVi = IVi and yVj = IVj. Note that if xVn = IVn, we already get what
we want, the same with yV1 = IV1. Thus, suppose that xVn 6= IVn
and yV1 6= IV1. We get that for any unit u in V , by Proposition 3.3.4,
(x− uy)Vn = IVn and (x− uy)V1 = IV1.

Now, consider i = 2, ..., n−1. Note that if u is a unit and (x− uy)Vi 6=
IVi, then x − uy ∈ miI. In addition, consider uk, ul, with k 6= l, such
that x−uky, x−uly ∈ miI. Then (x− uky)−(x− uly) = (uk − ul) y ∈
miI.

Suppose that x − uky, x − uly ∈ miI, for all k 6= l. Then uk − ul is a
unit, and so, y ∈ miI. On the other hand, yVi = IVi, so y = qy for
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some q ∈ mi. We get that y(1 − q) = 0, with y 6= 0 and 1 − q 6= 0.
Hence we have a contradiction, because Vi is a domain. Thus for each
i, there exists at most one of the units, uh such that x − uhy ∈ miI.
Recall that we have n− 1 units and we are considering n− 2 valuation
domains Vi. Then, there is a uk such that (x− uky)Vi = IVi. We
conclude that uk works for i = 1, ..., n.

�

Theorem 3.3.6. Let (R,m) be a local domain, K its field of fractions, and
R 6= K. Then, the following are equivalent:

1. R is a Noetherian valuation domain,

2. R is a principal ideal domain,

3. R is Noetherian and the maximal ideal m is principal,

4. R is Noetherian and there is no ring properly between R and K,

5. R is Noetherian, one-dimensional, and integrally closed,

6. ∩nmn = 0 and m is principal,

7. R is a valuation domain with value group isomophic to a subgroup of
Z.

Proof.

1 ⇒2: Since R is Noetherian, its ideals are finitely generated. Then, by
Lemma 3.3.5, the ideals in R are principal.

2 ⇒ 7: First we prove that R is a valuation domain. Let x ∈ R be such that
m = 〈x〉. Note that

Frac(R) = Rx =
{ a

xn
| a ∈ R, n ∈ N

}
.

Let f ∈ Frac(R). Then, f = a
xn

for some a ∈ R, n ∈ N. Consider

a = rxt for some r ∈ R, t ∈ N. We have that f =
rxt

xn
= rxt−n. We
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have two cases t > n or n > t. In the first case, f ∈ R; on the second,
f−1 ∈ R. We get that R is a valuation domain. Now define the map

ϕ :
Frac (R)∗

R∗
→ Z[ a

xn

]
7→ n,

Note that ϕ is well define since v (r) = 0 for every r ∈ R∗. In addition,
ϕ is a group homomorphism. Indeed,

ϕ

([ a
xn

] [ b

xm

])
= ϕ

([
ab

xn+m

])
= n+m

= ϕ
([ a
xn

])
+ ϕ

([
b

xm

])

Now we prove that is ϕ is inyective. Let
[ a
xn

]
∈ Frac (R)∗

R∗
be such that

ϕ
([

a
xn

]
= 0
)
. Note that we can take a ∈ R \ m. Then n = 0, this is[ a

xn

]
= a ∈ R∗. We conclude that the value group of R is isomorphic

to a subgroup of Z.

7 ⇒2: Consider the valuation v : K∗ → K∗/R∗ ∼= Γ ⊆ Z. Then there exists
x ∈ K such that v(x) = 1. Thus, x is not a unit in R.

Let I be an arbitrary non-zero ideal in R. Since R is the set of all
elements with positive valuation and I 6= ∅, there exists y ∈ I such
that v(y) = min {v(i)|i ∈ I}. Set n = v(y). We have that v (yx−n) =
n − n = 0. Hence, yx−n ∈ R∗. In addition, v (zx−n) > 0 ∀z ∈ I, and
so, zx−1 ∈ R. Note that z = (zx−n)xn ∈ xnR, ∀z ∈ I. Since y = rxn

for some r ∈ R, r = yx−n in K, we get that v(r) = 0. We get that
r ∈ R∗ and xn ∈ yR ⊆ I. Hence, I = xnR = yR. We conclude that R
is a principal ideal domain.

7 ⇒1: From the previuos implication, we get that R is a principal ideal valu-
ation domain. We conclude R is Noetherian.

We have shown that 1, 2 and 7 are equivalent.
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1 ⇒4: Suppose there exists a ring A such that R ⊆ A  K. We show that
R = A. Note that by Remark 3.3.2, A is a valuation domain too. Now
let a ∈ A. Then a ∈ K. Thus a ∈ R or a−1 ∈ R. If a ∈ R, then we
are done. Suppose that a−1 ∈ R and a /∈ R. Then a−1 ∈ A, and so,
a is a unit in A. We get that a /∈ mA and a ∈ m. Since m = mA ∩ R,
a−1 ∈ m, which is a contradiction. We conclude a ∈ R.

4 ⇒3: Note that R is already Notherian. Now we show that dimR = 1. Let
x ∈ m. Then we get that R ( Rx = K, where Rx denotes the localiza-
tion of R in x.
Now consider a non-zero prime ideal Q of R. Then 0 ( Q ( R. As
Rx = K, we have that QRx = K. This because for each element y ∈ Q,
its inverse is in Rx, and so, QRx = 〈1〉 = K.
By Theorem 2.0.13, it suffices to prove that R is normal. By contra-
diction. Consider f ∈ K \R. Then R ( R [f ] = K. Thus, by Theorem
2.0.14 dimR = dimR [f ] = 0, but this is a contradiction. We get that
f ∈ R. Hence m is principal, and we conclude that dimR = 1.

3 ⇒ 2: Since R is Noetherian, we have that every ideal is finitely generated.
Now let m = 〈x〉, with x ∈ R and let I be any ideal in R. Thus
I = 〈a1, ...an〉. Since I ⊆ m, we get that

ai =

ki∑
j=1

rijx
nij =

(
ki∑
j=1

rijx
nij
−pi

)
xpi ,

where pi = min
{
nij
}

. Hence I = 〈xj〉 with j = min {pi}.

2 ⇒3: Since R is a principal ideal domain, we have that m is principal.

Now, we have that 1, 3, 4 and 2 are equivalent. Therefore, They are also
equivalent to 7.

1 ⇒5: Since R is Noetherian, it is integrally closed, by Lemma 3.3.1. Hence,
since R is a principal domain, it is one dimensional.

5 ⇒6: Applying Krull’s Intersection Theorem, we get that ∩nmn = 0. We
prove m is principal. Note that R is reduced, because it is a domain.
Thus it is normal and, by Theorem 2.0.13, it satisfies the Serre’s codi-
tion (R1). Now, we know that Rm is regular, and so, mRm is generated
by one element. We conclude that m is generated by one element.
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6 ⇒2: Let x ∈ R be such that m = 〈x〉, I ( R a non-zero ideal, and y ∈ I\{0}.
As I ⊆ m, there exist r1 ∈ R such that y = r1x. If r1 ∈ m, we get that
r1 = r2x, r2 ∈ R, and so, y = r2x

2. Inductively there exists n ∈ Z such
that rn /∈ m and y = rnx

n; otherwise, y ∈ ∩mn but this is not possible.

Thus, rn is a unit, and so, 〈y〉 = 〈xn〉. Since this holds for every
nonzero element in I, we can consider the least such integer k, such
that 〈z〉 =

〈
xk
〉

for each element z ∈ I. We conclude that I =
〈
xk
〉
.

Finally, we get that 1, 5, 6 and 2 are equivalent. We conclude the
equivalence among the statements. �

Proposition 3.3.7. A K-valuation domain V is Noetherian if and only if
Γ ∼= Z or Γ ∼= {0}.

Proof. Let Γ be the value group obtained from V . By Theorem 3.3.6, we
know that V 6= K is Noetherian if and only if Γ ∼= Z.

Now if V = K, then K∗

V ∗
= K∗

K∗
= 0, so Γ = {0}. On the other hand, if

Γ ∼= {0}, then K∗

V ∗
= V ∗. Thus ∀x ∈ K∗, x ∈ V ∗. We get that V = K.

Therefore, V = K if and only if Γ ∼= {0}. �

Definition 3.3.8. A valuation and its corresponding valuation domain are
said to be (generalized) discrete if its value group is isomorphic to Zn
with the lexicographic order.

Recall that our goal is to prove the main theorem over a discrete valuation
domains under certain conditions.

Example 3.3.9. Some examples of discrete valuation domains are

• K[[x]] with K a field,

• Qp with p prime.

Now we relate Noetherian and discrete valuation domains.

Theorem 3.3.10. Let V be a valuation domain that is not a field. Then V
is Noetherian if and only if it is a discrete valuation domain of dimension
one.
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Proof. First, suppose V is Noetherian. Then, by Theorem 3.3.6, V has
dimension one and its valuation group is isomorphic to a subgroup of Z.

Now, suppose V is a discrete valuation domain of dimension one. We
show that V is a principal ideal domain. Let I be an ideal in V . There exists
an element y ∈ I such that

v (y) = min {v (i) | i ∈ I} ,

where v is the associated valuation to V . Note that (y) ⊆ I. Now, let z ∈ I.
We have that v (z) ≥ v (y). Then v (zy−1) ≥ 0, and so, zy−1 ∈ V . As
z = (zy−1) y ∈ (y), we conclude that I ⊆ (y). �

Now we want to understand valuation domians over field extensions, for
that we have the following lemma.

Lemma 3.3.11. The value group of a one dimensional valuation ring V is
isomorphic to a subgroup of R.

Proof. Let Γ be the value group we obtained from V , we need to prove it is
Archimedean.

We proceed by contradiction. Let g, h ∈ Γ such that g > 0. Consider
x, y ∈ V be such that v(x) = g and v(y) = h. Suppose that ng < h, ∀n ∈ N.
Thus 〈y〉 is a non-zero ideal. Note that if x ∈ 〈ym〉, for some m ∈ N, then
x = rym with r ∈ V . Thus g = v(x) = v(y) = v(ym) = mh, which is a
contradiction. Hence, x /∈

√
〈y〉.

Since
√
〈y〉 = mV , we deduce that x is a unit. Hence v(x) = 0, which is

a contradiction. We conclude that there exists m ∈ N such that mg > h. By
Theorem 3.2.17, Γ is isomorphic to a subgroup of R. �

Proposition 3.3.12. Let V be a K-valuation domain and F be a subfield of
K. Then

1. the intersection V ∩ F is a F -valuation domain;

2. if V is Noetherian, then so is V ∩ F ;

3. if F ⊆ K is an algebraic extension, then ΓV
⊗

ZQ = ΓV ∩F
⊗

ZQ.

Proof.
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1. Let x ∈ F . Then x ∈ K. Thus, x ∈ V or x−1 ∈ V . If x ∈ V , we are
done. Suppose x /∈ V . Then x−1 ∈ V . Since F is a field, x−1 ∈ F , and
x−1 ∈ V ∩F . We conclude V ∩F is an F -valuation domain. Note that
the corresponding valuation is the restriction of the valuation v in F .

2. First we prove ΓV ∩F ⊆ ΓV . Consider g ∈ ΓV ∩F . Then there exists
x ∈ V ∩ F such that v|F (x) = g. Since x ∈ V , we have that v(x) =
g ∈ ΓV . Now, by Theorem 3.3.6, ΓV is isomorphic to a subgroup of Z.
Since ΓV ∩F is a subgroup of ΓV , we deduce that it is isomorphic to a
subgroup of Z. Hence V ∩ F is Noetherian.

3. Let F ⊆ K be an algebraic extension and x ∈ K. Then there exists a
polynomial such that

xn + a1x
n−1 + · · ·+ an = 0

with ai ∈ F . Note that

v
(
aix

n−i) = v (ai) + v
(
xn−i

)
= (n− i) v (x) ,

because v (an) = 1. Therefore, v (aix
n−i) 6= v (ajx

n−j) for every i, j ∈
{1, . . . , n}, with i 6= j. Hence we have that

aix
n−i = −xn − · · · − âixn−i − · · · − an

⇒v
(
aix

n−i) = v
(
−xn − · · · − âixn−i − · · · − an

)
≥ min

{
v
(
ajx

n−j) |j 6= i
}

⇒v
(
aix

n−i) = v
(
ajx

n−j) for some j

⇒ (i− j) v(x) = v (ai)− v (aj) ∈ ΓV ∩F

⇒v(x)⊗ 1 = (i− j)v(x)⊗ 1

i− j
.

We conclude that ΓV ⊗Z Q = ΓV ∩F ⊗Z Q

�

Theorem 3.3.13. Let V be a valuation ring with maximal ideal m and W
be the m-adic completion of V . Then W is a valuation ring.
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Proof. First we need to prove W is a domain. Consider {an}n≥0, {bn}n≥0

two Cauchy sequences of elements in V whose product converges to zero in
W . Then for N > 0, there exists M ∈ Z such that ∀n ≥ M , anbn ∈ m2N .
We have

anbn =
l∑

i=0

ci,

with ci ∈ m2N . Let I2N = 〈ci | i = 1, . . . t〉 ⊆ m. Then anbn ∈ I. By
Proposition 3.3.4, there exists an element cn such that I2N = 〈cn〉2N . Note
that for each n, we have that an ∈ 〈cn〉N or bn ∈ 〈cn〉N .

As we are working with Cauchy sequences, there exists an integer T
such that an − an+1 ∈ mT and bn − bn+1 ∈ mT . Consider an integer n0 ≥
max {M,T}, and without loss of generality suppose that an0 ∈ CN

n0
⊆ mN .

Then for every n ≥ n0, an ∈ mN . Then, the sequence {an}n∈N is zero. Hence
W is a domain.

Now, let x ∈ Frac (W ). Then

x =
{an}n∈N
{bn}n∈N

where {an}n ∈ N and {bn}n ∈ N are two Cauchy sequences in V .
As the value group is totally order we have that v (an) ≤ v (bn) or v (bn) ≤

v (an) for each n ∈ N. �

From this point, we give some interesting properties of valuations. For
further material refer to Nicolas Bourbaki’s book in Commutative Algebra
[Bou89].

Definition 3.3.14. Let v be a K-valuation, a ∈ K, and g ∈ Γv. Define the
set

Bg (a) = {b ∈ K | v (a− b) > g} .
This set is the base of the topology defined by v.

Definition 3.3.15. Consider an extension of fields K ⊆ L. A L-valuation
w is called an extension of a K-valuation v if w|K = v. Likewise, we say
that Rw dominates Rv, if Rv = Rw ∩K with mw ∩Rv = mv.

Remark 3.3.16. Note that we have the following maps

Rv

mv

↪→ Rw

mw

.
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Γv ↪→ Γw

Definition 3.3.17. The degree of the field extension in Remark 3.3.16 is
called residue degree of w over v, and it is denoted f (w/v).

The ramification index of w over v, denoted e (w/v), is the index of
Γv in Γw .

Remark 3.3.18. If K ↪→ L is a finite extension, then f (w/v) and e (w/v)
are both finite.

Definition 3.3.19. Let V and W be two K-valuations. We say V and
W are independent, if K is the ring generated by V and W ; otherwise,
they are dependent. Similarly, two valuations v and w are independent
(dependent) if their rings are independent (dependent).

Remark 3.3.20. Dependence is na equivalence relation.

Proposition 3.3.21. Let v,w be K-valuations. Then v and w are dependent
if and only if they define the same topology.

Proof. First suppose they define the same topology. Then consider the pre-
serving order map as the identity.

For the converse, suppose that v and w are dependent. Therefore, there
exists a order preserving group homomorphism φ. Let γ1 ∈ Γv, γ2 ∈ Γw, and
a ∈ K. Then we have the sets Bγ1 (a) and Bγ1 (a) as in Definition 3.3.14.

Take b ∈ Bγ1 (a). Then v (a− b) > γ1. We have that

w (a− b) > φ (v (a− b)) > φ (γ1) .

We conclude they define the same topology. �

Lemma 3.3.22. Let v1, . . . , vn with n ≥ 2 be pairwise dependent K-valuations.
Then the corresponding rings V1, . . . , Vn generate a subring of K distinct from
K.

Proof. We proceed by induction. The case n = 2, follows from the definition.
Suppose our claim holds for n − 1 valuations. Then, there exists a subring
A  K such that Vi  A for i = 1, . . . , n−1. On the other hand, there exists
a subring B  K such that Vn−1 ( B and Vn ( B. By Proposition 3.3.3, A
and B are comparable with the inclusion. The greater is the subring of K
we are looking for. �
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3.4 Existence of valuation rings

Lemma 3.4.1. Let R be a domain with field of fractions K. Let m be a prime
ideal of R. Then for all x ∈ K∗, either mR [x] 6= R [x] or mR [x−1] 6= R [x−1].

Proof. Localizing at m we assume that mR [x−1] = R [x−1], we show that
mR [x] 6= R [x]. We have that

1 = a0 + a1x
−1 + · · ·+ anx

−n ⇒xn = a0x
n + a1x

n−1 + · · ·+ an

⇒ (1− a0)xn = a1x
n−1 + · · ·+ an

⇒0 = − (1− a0)xn + a1x
n−1 + · · ·+ an,

for some ai ∈ m. Since a0 ∈ m, (1− a0) is a unit in R, we get that x is
integral over R. Hence R [x] is an integral extension of R. By the Lying
Over Theorem, there exists a prime ideal n ( R [x], such that n ∩ R = m.
We conclude that mR [x] 6= R [x]. �

Theorem 3.4.2. Let R be an integral domain, and let m be a non-zero prime
ideal in R. Then, there exists a valuation domain V between R and the field
of fractions of R, such that mV ∩ R = m, where mV is the maximal ideal of
V .

Proof. Localizing at m we may assume that R is local, and K is its quotient
field. Consider the set

Π = {(A,mA) local rings|R ⊆ A,mA ⊆ mA, and A ⊆ K} .

Note that (R,m) ∈ Π. Now, we consider the following partial order:

(A,mA) ≤ (B,mB)⇔ A ⊆ B and mAB ⊆ mB.

Take (A0,mA0) ≤ (A1,mA1) ≤ . . . an ascending chain and note that the
element ∪iAi is an upper bound. Hence, by Zorn’s Lemma, Π has a maximal
element (V,mV ), where mV ∩R = m.

We show that V is a valuation domain. Let x be an element in K, and
suppose x−1 /∈ V . By Lemma 3.4.1, mV V [x] 6= V [x]. Take a maximal ideal
n of V [x], such that mV V [x] ⊆ n.

Now consider the localization in n, say S and its maximal ideal nS. Note
that (S, nS) ∈ Π. Since V ⊆ S and mV S ⊆ nS, we get that (V,mV ) ≤
(S, nS). As V is a maximal element, S = V . Hence x ∈ V . We conclude
that V is a valuation domain and mV ∩R = m. �
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Theorem 3.4.3. Let R be a Noetherian integral domain and let P be a non-
zero prime ideal in R. Then there exists a Noetherian valuation domain V
between R and the field of fractions of R such that mV ∩R = P .

Proof. We assume P is the unique maximal ideal of R by localization at P .
Take

G = grP (R) =
⊕
n≥0

(
P n/P n+1

)
= R/P

[
P/P 2

]
.

Suppose P = (f1, . . . , fn). Since R/P is a field and P/P 2 is finitely
generated, we get that

G ∼= R/P
[
f̄1, . . . , f̄k

]
.

In addition, we have the following homomorphism

ϕ : R/P [x1, . . . , xk]→ R/P
[
f̄1, . . . , f̄k

]
xi 7→ f̄i

Suppose that P/P 2 has only nilpotent elements. Then there exist ele-
ments a1, . . . ak such that f̄i

ai = 0, ∀i = 1, . . . , k. Thus we have the homo-
morphism

ϕ̄ :
R/P [x1, . . . , xk]

(xa11 , . . . , x
ak
k )

→ R/P
[
f̄1, . . . , f̄k

]
x̄i 7→ f̄i.

Thus by Theorem 2.0.17, dimR = 0. Thus, not every element in P/P 2 is
nilpotent, so take x ∈ P/P 2 such that x̄ ∈ G is not nilpotent.

Let S = R [P/x] =

[
f1

x
, . . . ,

fn
x

]
. Note that S is finitely generated as R-
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algebra and so, S is Noetherian. Suppose xS = S and write

1 =x
n∑
i=0

ai
xi

for some ai ∈ P , i = 1, . . . , n

=x

(
n∑
i=0

xn−iai
xn

)
with xn−iai ∈ P n

=
xa

xn
where a =

n∑
i=0

xn−iai

=
a

xn−1

Then xn−1 = a ∈ P n, which is a contradiction. Hence xS = PS is a
proper ideal. By Principal Ideal Theorem, we have that dimSQ = 1, for
every Q prime ideal of S.

Now, if we consider the integral closure TQ of SQ, by Lying Over Theo-
rem, there exists a maximal ideal n in T containing QT . By Krull-Akizuki
Theorem, TQ is one dimensional, Noetherian and integrally closed. By The-
orem 3.3.6, T is a Noetherian valuation domain with maximal ideal nT . As
Q ⊆ QT ⊆ n ⊆ nT , then Q ⊆ nTn. In addition, xS ⊆ Q, thus P ⊆ PS ⊆ nT ,
and so, P ⊆ nT ∩ R. Finally, take m ∈ n ∩ R such that m /∈ P . Then m
is unit in R, and so, m is unit in Tn, which is a contradiction. We conclude
that nTn ∩R = P . �
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Chapter 4

Methods in prime characteristic

In this chapter, we study the Frobenius map and how it describes singu-
larities. Specifically, we study F -finiteness, F -splitting, F -regularity, and
F -purity. In addition, we give some of their properties, relations among
them, and their effects over domains.

Setting 4.0.1. The rings used in this chapter be commutative, with unit
and of prime characteristic p.

4.1 Introduction to Frobenius morphism

Definition 4.1.1. Let R be a ring. The Frobenius morphism is the ring
homomorphism

F : R→ R

r 7→ rp.

The iterated Frobenius is the map F e = F ◦ · · · ◦ F e > 0 times. This is,

F e : R→ R

r 7→ rp
e

.

Proposition 4.1.2. Let R be a ring. The Frobenius morphism is injective
if and only if R is reduced.

Proof. Let R be reduced. Then F has to be injective, because xp = 0 if and
only if x = 0.

40



Now, suppose that the Frobenius map is injective. We proceed by con-
tradiction. Let x ∈ R−{0} be a nilpotent element. Then there exists α ∈ N
such that xα = 0. In addition, we can find an element e ∈ N such that
α < pe.

Since F is injective, we get that F e is also injective. Thus, F e(x) = xp
e

=
0, which is a contradiction. �

Definition 4.1.3. Let R be a ring and I an ideal. We denote I[pe] to the
ideal generated by the pe-powers of all elements of I.

Setting 4.1.4. Through the rest of this chapter we only consider integral
domains.

Proposition 4.1.5. The Frobenius homomorphism induces the identity map
on Spec (R).

Proof. Consider the following homomorphism

φ : Spec(R)→ Spec(R)

P 7→ F−1(P ).

Let Q ∈ Spec(R). Since Q is an ideal, we deduce that F (Q) ⊆ Q. Hence
Q ⊆ F−1(F (Q)) ⊆ F−1(Q).

On the other hand, if x ∈ F−1(Q), then xp ∈ Q. Note that
√
Q = Q, and

so, x ∈ Q. This is, φ(Q) = Q. �

Definition 4.1.6. We define the following algebras.

• Rp : the subring of p powers of R. Note that Frobenius factors through
the inclusion, this is

Rp ↪→ R.

• F∗R : the ring R using as second operation the restriction of scalars.
The elements of this ring are denoted as F∗r. This is equivalent to the
algebraic structure given by Frobenius, this is

R
F−→ F∗R

• R1/p : the subring of the algebraic closure of Frac(R) whose elements
are solutions of the equations xp−r = 0 for each r ∈ R. Note that each
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of these equations have only one solution, because R is of characteristic
p > 0. The elements of this ring are denoted by r1/p. We have the
embedding

R ↪→ R1/p.

Thus we have the following commutative diagram We have the following com-
mutative diagram of R-algebras

Rp R

R F∗R

R R1/p.

Remark 4.1.7. Note that F∗R ∼= R1/p, using the R-module homomorphism
that sends F∗r 7−→ r1/p. Furthermore, we have that

F∗R ∼= R1/p ∼= Rp ∼= R

as rings.

In this manuscript we focus on the algebra F e
∗R. By Remark 4.1.7, every

result about F e
∗R has an equivalent version with the other two algebras.

Definition 4.1.8. Let R be a ring and M be an R-module. Define Fe
∗M, for

e > 0, as the F e
∗R-module with operation

(F e
∗ r) (F e

∗m) = F e
∗ (rm) ,

with r ∈ R, m ∈M .

Remark 4.1.9. We have that IF e
∗R = F e

∗ I
[pe], and F∗

(
R/m[p]

) ∼= F∗R/F∗m
[p].

Example 4.1.10. Let R = Fp [x1, ..., xn]. Note that

F∗R = Fp
[
F∗x

β1
1 , . . . , F∗x

βn
n

]
,

because a = ap ∀a ∈ Fp. Now, using the division algorithm, βi = qip + αi
with 0 ≤ αi ≤ p− 1. Thus, for every monomial in F∗R, we have that

a(β1,...,βn)F∗x
β1
1 · · ·F∗xβnn =a(β1,...,βn)F∗x

q1p+α1

1 · · ·F∗xqnp+αn
n

=a(β1,...,βn)x
qi
1 · · · xqnn F∗x

α1
1 · · ·F∗xαn

n ,
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which belongs toR [F∗x
α1
1 · · ·F∗xαn

n ]. Note that this monomial belongs uniquely
to R [F∗x

α1
1 · · ·F∗xαn

n ] because of the choose of αi. We conclude F∗R is a free
R-mod with basis

{F∗xα1
1 , . . . , F∗x

αn
n |0 ≤ αi ≤ p− 1} .

The following theorem shows that F∗R commutes with localization.

Proposition 4.1.11. Let R be a ring and W ⊆ R be any multiplicative
system. Then W−1F∗R ∼= F∗ (W−1R).

Proof. Consider the map

ϕ : W−1F∗R→ F∗
(
W−1R

)
1

g
F∗r 7→ F∗

(
r

gp

)
.

First we show that ϕ is well-defined. Take two related elements, say
1

g
F∗r ∼

1

h
F∗s. Note that

1

g
and

1

h
may be thought as scalars for F∗R. Then

we have that F∗
r

gp
∼ F∗

s

hp
. Note that ϕ is a homomorphism.Indeed

1

g
F∗r +

1

h
F∗s =

1

hg
F∗ (hpr + gps) .

Thus,

F∗ (hpr + gps) = F∗

(
r

gp
+

s

hp

)
= F∗

r

gp
+ F∗

s

hp
.

In addition, if α ∈ R, then

α

(
1

g
F∗r

)
=

1

g
F∗α

pr.

Therefore

F∗
αpr

gp
= αF∗

r

gp
.

Now, let
1

g
F∗r ∈ kerϕ. Then, there exists s ∈ W such that sr = 0. Since

we are in a domain, r = 0, and so,
1

g
F∗r = 0. Furthermore, for any F∗

r

g
, we
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have the element
1

g
F∗rg

p−1, such that

ϕ

(
1

g
F∗rg

p−1

)
= F∗

r

g
.

Hence ϕ is an isomorphism.
�

Theorem 4.1.12. Let (R,m) be a Noetherian local ring, and let R̂ be the

completion at m. Then there is a identification of the maps R̂ → F̂∗R and
R̂→ F∗R̂.

Proof. We have that F̂∗R = lim← F∗R/m
n (F∗R). Thus, the morphism

R/mn → F∗R/m
n (F∗R)

induces the morphism
R̂→ F̂∗R.

On the other hand, we know that ∀n ∈ N

F∗R/m
nF∗R ∼= F∗R/F∗

(
(mn)[p]

)
∼= F∗

(
R/ (mn)[p]

)
.

In addition,
{

(mn)[p]
}
n

and {mn}n are confinal. Indeed, (mn)[p] ⊆ mn

for every n ∈ N. Now, let x1, . . . , xd be the generators of m. Note that
mpd = 〈xα1

1 · · · x
αd
d | α1 + · · ·+ αd = pd〉, so there exists i such that αi > p in

each generator of mpd. This is, mpd ⊆ m[p], and so, mpdn ⊆
(
m[p]
)n

for every
n ∈ N.

Hence,

lim
←
F∗R/m

nF∗R = lim
←
F∗R/F∗

(
(mn)[p]

)
= lim
←
F∗

(
R/ (mn)[p]

)
Thus we have the map

R̂→ F∗R̂.

�

The module F e
∗R gives us information about both the domain and its

residue field. The following theorems are examples of this fact.
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Proposition 4.1.13. Let (R,m, K) be an local domain. If F∗R is a finitely
generated module, then it is minimally generated by

[K : Kp] dimK

(
R/m[p]

)
elements.

Proof. By Theorem 2.0.20, the minimal number of generators is the dimen-
sion of F∗R/mF∗R. Since mF∗R ∼= F∗m

[p], we have that F∗R/mF∗R ∼=
F∗R/F∗m

[p] ∼= F∗
(
R/m[p]

)
.

Hence dimF∗K F∗
(
R/m[p]

)
= dimK

(
R/m[p]

)
. Since we have the field ex-

tension K ⊆ F∗K, we conclude that

dimK (F∗R) = [K : Kp] dimK

(
R/m[p]

)
.

�

Theorem 4.1.14 (Kunz’s Theorem). If R is a Noetherian domain, then R
is regular if and only if F∗R is a flat R-module.

Proof. In this work we only show that if R is regular then F∗R is flat as
R-module. For the complete proof, we refer to the paper ”Characterizations
of regular local rings of characteristic p” by Ernst Kunz[Kun69]. Note that
R is regular if and only if Rm ∀m ∈ Max(R) and F∗R is flat over R if and
only if (F∗R)m

∼= F∗Rm is flat over Rm. Hence, we focus on the local case.
First we prove that R regular implies that F∗R is flat. Let (R,m, K) be

a regular local domain. By the Cohen Structure Theorem, we have

R ∼= K[[x1, ..., xn]].

By Remark 4.1.7, K[[F∗x1, ..., F∗xn]] is a free K[[x1, ..., xn]]-module, thus

K[[x1, ..., xn]] ⊆ K[[F∗x1, ..., F∗xn]]

is a flat extension. Since F∗K is a flat K-module, F∗K ⊗K K[[F∗x1, ..., F∗xn]]
is also flat. By properties of extension of scalars, we have that F∗K ⊗K
K [F∗x1, ..., F∗xn] ∼= F∗K [F∗x1, ..., F∗xn], Thus we have that

F∗K ⊗K K [F∗x1, ..., F∗xn]

(F∗x1, ..., F∗xn)j
∼=
F∗K [F∗x1, ..., F∗xn]

(F∗x1, ..., F∗xn)j

⇒ lim
←

F∗K ⊗K K [F∗x1, . . . , F∗xn]

(F∗x1, . . . , F∗xn)j
∼= lim
←

F∗K [F∗x1, . . . , F∗xn]

(F∗x1, . . . , F∗xn)j

⇒ F∗K⊗̂KK[[F∗x1, . . . , F∗xn]] ∼= F∗K[[F∗x1, . . . , F∗xn]].

45



We conclude that F∗R is flat for R, because a composition of flat maps
is flat.

�

Now that we know some properties from the Frobenius homomorphism,
we are ready to introduce the first F -singularity.

Definition 4.1.15. We say that a domain R is F -finite if F∗R is a finitely
generated R-module.

Remark 4.1.16. Quotients and localizations of a F -finite ring, are also
F -finite. In addition, any finitely generated algebra over a F -finite ring is
F -finite.

4.2 F-finiteness in Excellence Rings

In this section we prove an equivalence from the main result.

Definition 4.2.1. Let R be a ring.

• We say that R is a Grothendieck ring or a G-ring if it is Noetherian
and for every P ∈ Spec (R),

RP → R̂P

is regular.

• We say that R is a J-2 ring if for every finitely generated R-algebra
S, the singular points of Spec (S) form a closed subset.

• We say that R is universally catenary if every finitely generated
R-algebra are catenary rings.

• We say that R is excellent if it is a universally catenary, J-2, G-ring.

Example 4.2.2. Some examples of excellent rings are

• fields,

• complete Noetherian rings

• C[[x1, . . . , xn]], R[[x1, . . . , xn]]
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Remark 4.2.3. If R is an excellent ring and W any multiplicative set, then
RW is also excellent. In addition, fnitely generated algebras are also excellent,
for instance the coordinate ring of a variety over C and R.

In order to prove the equivalence, we mention the following lemma.

Lemma 4.2.4. Let A be an excellent domain. The integral closure of A in
any finite extension of its fraction field is finite as a A-module.

Theorem 4.2.5. Let R be a Noetherian domain. Then R is F -finite if and
only if it is excellent and its fraction field is F -finite.

Proof. First, suppose R is F -finite and K = Frac (R). Then R is a finitely
generated Rp-module. Note that

R⊗Rp Kp ∼=R⊗Rp

(
R(0)

)p
∼=R⊗Rp Rp

(0)p

∼=R(0)p

∼=R(0)

=K.

As Kp is a Rp-module, it is finitely generated. Thus, R⊗Rp Kp is finitely
generated and Rp-module. Note Rp is a Kp-module, and so, K = R⊗Rp Kp

is a finitely generated Kp-module. We recall that F -finite Noetherian rings
are excellent [Kun76, Theorem 2.5] .

Now, as Rp ∼= R as rings, then Rp is also an excellent ring. On the other
hand, K is a finitely generated Kp-module, by Lemma 4.2.4, the integral
closure of Rp in K is a finitely generated Rp-module. Let r ∈ R. Then we
have the polynomial f (x) = x− r in K [x], such that f (r) = 0. Hence, R is
contained in the integral closure of Rp. Since Rp is Noetherian, we conclude
that R is a finitely generated Rp-module. �

4.3 F-split domains

The usual definition of “a splitting map” can be specialized to the Frobenius
map. This brings the following definition.

47



Definition 4.3.1. Let R be a domain. We say that R is Frobenius split,
or F -split if there is a map

ϕ : F∗R→ R

such that ϕ ◦ F = IdR.

Remark 4.3.2. Saying that R is F -split is equivalent to the following:

• there exists π ∈ Hom (F∗R,R) such that π (F∗1) = 1, and

• F∗R ∼= R⊕M , with M an R-module.

The following definitions are examples of F -split rings.

Definition 4.3.3. Let K be a field, S = [x1, . . . , xn] be a polinomial ring and
I ∩ni=1 Pi be an square free monomial ideal, where each Pi = ({xj | j ∈ Si})
is a monomial prime ideal. Then the ring R/I is called a Stanley-Reisner
ring.

Definition 4.3.4.

1. (Generic) If X = (xi,j) is an m× r matrix of variables, then It(X) is
the ideal of R = k[X] generated by the t-minors of X.

2. (Symmetric) If Y = (yi,j) is an m×m generic symmetric matrix, i.e.,
yi,j = yj,i for every 1 ≤ i, j ≤ m, then It(Y ) is the ideal of R = k[Y ]
generated by the t-minors of Y . The minors [i1, . . . , it|j1, . . . , jt] such
that is ≤ js for every 1 ≤ s ≤ t are called doset minors and they
generate It(Y ).

3. (Skew-symmetric) Let Z = (zi,j) be an m × m generic skew sym-
metric matrix, i.e., zi,j = −zj,i for every 1 ≤ i < j ≤ m, and
zi,i = 0 for every 1 ≤ i ≤ m. The minors of the form [i1, . . . , i2t] :=
[i1, . . . , i2t|i1, . . . , i2t] are squares of certain polynomials of R = k[Z].
These polynomials are called the Pfaffians of Z. The ideal P2t(Z) is
the one generated by the 2t-Pfaffians of Z.

Remark 4.3.5. Let c ∈ R be a nonzero element with e ∈ N and π ∈
Hom (F e

∗R,R) such that π (F e
∗ c) = 1. Then take θ = π ◦×F e

∗ c ◦F e−1, where
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×F e
∗ c is the map defined by r 7→ rF e

∗ c. We have that

θ (F∗1) =
(
π ◦ ×F e

∗ c ◦ F e−1
)

(F∗1)

= (π ◦ ×F e
∗ c) (F e

∗ 1)

=π (F e
∗ c)

=1

This implies that R is F -split.

Proposition 4.3.6. If (R,m) is a F -finite regular local domain, then R is
F -split.

Proof. Note that, by Theorem 4.1.14, F∗R is flat and finitely generated, and
so, it is also free. Thus, any minimal set of generators is a free basis for
F∗R. By Theorem 2.0.20, we find one by choosing a basis for F∗R/mF∗R =
F∗
(
R/m[p]

)
. We take the element F∗1 as part of a basis for F∗R, and consider

the projection

π : (F∗1)R⊕ (F∗b1)R · · · ⊕ (F∗bj)R→ R

(F∗1) r0 ⊕ (F∗b1) r1 · · · ⊕ (F∗bj) rj 7→ r0.

Finally, we have that

(π ◦ F ) (1) =π (1p)

=π (F∗1)

=1.

We conclude that R is F -split. �

Proposition 4.3.7. A domain R is F -split if and only if the module R/ Imψ
is zero, where ψ is defined as

ψ : Hom (F∗R,R)→R
φ 7→φ (F∗1) .

Proof. We first assume thatR is F -split. Then there exists π ∈ Hom (F∗R,R)
such that π ◦ F = Id. By Theorem 2.0.25, ψ is surjective. Hence R/ Imψ is
zero.

Conversely, if R/ Imψ is zero, then Imψ = R. Appliying the Theorem
2.0.25, we get that the Frobenius map splits.

�
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Corollary 4.3.8. A domain R is F -split if and only if Rm is also F -split
∀m ∈ Max (R).

Proof. This follows from Proposition 4.3.7 and Theorem 2.0.23. �

4.4 F-regular domains

We introduce another class of rings closely related to the F -splitting.

Definition 4.4.1. Let R be a F -finite domain. We say that R is F -regular
if for every c 6= 0 there exists e ∈ N such that the R-module map

R→ F e
∗R

1 7→ F e
∗ c.

splits as a map of R-modules. This is, there exist e ∈ N and π ∈ Hom (F e
∗R,R)

such that π (F e
∗ c) = 1.

This class of rings was introduced by Hochster and Huneke [HH89a] with
the name “strongly F -regularity” along with other related notions. We recall
that Datta and Smith [DS16] called it “F -split regularity”. Throughout this
work we simple called it F -regularity.

Theorem 4.4.2 ([AL03]). Let R be a F -finite domain. Then R is F -regular
if and only if

lim
e→∞

free. rankF e
∗R

rankF e
∗R

> 0.

The limit of the Theorem 4.4.2 is called F -signature. It first appeared
implicity in the work of of Smith and Van den Bergh [SVdB97]. Later Huneke
and Leuschke [HL02] coined the term if the limitexist. The convergence of
F -signature was proven by Tucker [Tuc12].

Now we give some examples of F -regular rings.

Example 4.4.3.

• Determinantal varieties,

• Cluster-algebras [BMRS15]

• Invariant rings [HH89b]
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• Toric rings [HH89b]

Remark 4.4.4. Note that if we consider c = 0 in the Definition 4.4.1, then
the map

ϕ : R→ F e
∗R

1 7→ F e
∗ c,

splits. Hence, there exists π : F e
∗R→ R such that π (F e

∗ c) = 1. Thus,

1 = π (F e
∗ 0) = π (rF e

∗ 0) = (π ◦ ϕ) (r) = r,

∀r ∈ R. In particular, take r = 0. Then 1 = 0, this is R = {0}.

Remark 4.4.5. Let R be a F -regular Noetherian domain and c = 1. There
exist e ∈ N and π ∈ Hom (F e

∗R,R) such that π (F e
∗ 1) = 1. Note that if e = 1,

we are done. Now, consider the homomorphism θ = π ◦F e−1. Then we have

θ (F∗1) =
(
π ◦ F e−1

∗
)

(F∗1)

=π (F e
∗ 1)

=1

Therefore R is F -split.

Theorem 4.4.6. If (R,m) is a Noetherian local F -finite regular domain,
then R is F -regular.

Proof. Take c 6= 0 in R. There exists e ∈ N such that c /∈ m[pe], by Theorem
2.0.15. Thus F e

∗ c /∈ F e
∗m

[pe]. By Theorem 2.0.20, F e
∗ c is part of a generating

set for F e
∗R as R-module. By Theorem 4.1.14, F e

∗R is a free R-module. Let
{F e
∗ c, b1, . . . bj} be a basis. Consider the projection

π : (F∗c)R⊕ (F∗b1)R · · · ⊕ (F∗bj)R→ R

(F∗c) r0 ⊕ (F∗b1) r1 · · · ⊕ (F∗bj) rj 7→ r0.

Note that π (F e
∗ c) = 1. Thus R is F -regular.

�

Proposition 4.4.7. Let i : S ↪→ R be an inclusion of Noetherian domains
that splits as S-modules. If R is F -regular, then S is also F -regular.
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Proof. We have a homomorphism Φ such that Φ ◦ i = IdS. In addition,
since R is regular, ∀c ∈ R − {0}, there exists e ∈ N and πc ∈ Hom (F e

∗R,R)
such that πc (F e

∗ c) = 1. Take d ∈ S − {0} and c = i (d). Consider the map
θd = Φ ◦ πc ◦ F e

∗ i. We have that

θd (F e
∗d) = (Φ ◦ πc ◦ F e

∗ i) (F e
∗d)

= (Φ ◦ πc◦) (F e
∗ c)

=Φ (1R)

=1S.

We conclude that S is F -regular. �

Hence, we note the strong relation between this two notions of F -splitness
and F -regularity. This yields to the following definition.

Definition 4.4.8. Let R be an F -finite domain, and c be a non-zero element.
We say that R is eventually F -split along c if there exists e ∈ N such
that

R→ F e
∗R

1 7→ F e
∗ c

splits.

Note that, R is F -regular if and only if it is F -split along every non-zero
element.

Remark 4.4.9. Let R be eventually F -split along some c, and d ∈ R such
that c = dh for some h. Thus there exist e ∈ N and π ∈ Hom (F e

∗R,R) such
that π (F e

∗ c) = 1.
Consider the following map

θ : F e
∗R→R
F e
∗ r 7→π (F e

∗ r · F e
∗h) .

Since θ (F e
∗d) = 1, we have that R is eventually F -split along d. Since R

is commutative, R is also F -split along h.

Theorem 4.4.10. Let R be an F -finite Noetherian domain.

a) If R is F -regular, then so is RW for any multiplicative system W .
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b) If Rm is F -regular for every m ∈ Max (R), then R is F -regular.

Proof.

a) Let
c

w
∈ R− {0}. We show that RW is eventually F -split along

c

w
. It

suffices to prove it for
c

1
, as

c

w
=
c

1
× 1

w
.

Note that c is a non-zero element, thus there exist e ∈ N and π ∈
Hom (F e

∗R,R) such that π (F e
∗ c) = 1. Consider the homomorphism

πW : F e
∗RW →RW

F e
∗ r

1
7→π (r)

1
.

We have that πW

(
F e
∗ c

1

)
=
π (F e

∗ c)

1
=

1

1
. Thus, RW is F - split along

c

1
. We conclude that it is F -regular.

b) Take c 6= 0. By Theorem 2.0.25, for each maximal ideal m the map

ψem : Hom (F em
∗ R,R)m →Rm

φ 7→φ (F em
∗ c)

1
.

is surjective for any em � 0. Fix m ∈ Max (R). We have that,
(R/ Imψem)m

∼= Rm/ (Imψem)m = 0.

Let Aem = R/ Imψem and P ∈ Ass (Aem). Then we have that

R/P ↪→ Aem ⇒ (R/P )m ↪→ (Aem)m = 0

⇒ (R/P )m = 0

⇒P * m.

Hence, P ∩ R m 6= ∅, ∀P ∈ Ass (Aem). Consider an element in this
intersection, fP . Since Aem is a finitely generated R-module, it has
finitely many associated primes, so we take the element

fm,em :=
∏

P∈Ass(Aem )

fP
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which is not in m. Moreover, Ass (Aem)f = 0, because for every P ∈
Ass (Aem) we have that P ∩

{
fnm,em |n ∈ N

}
= ∅. Hence (Aem)fm,em

= 0.

Note that we can get elements em and fm,em for each maximal ideal m.
Thus, we consider

Ufm,em = {P ∈ Spec (R) |fm,em /∈ P}

which are basic open sets in the Zariski topology, and the open set

∪m∈Max(R)Ufm .

Since Spec (R) is quasi-compact and this union is a cover for it, there
exists a finite subcover

Ufm1
, . . . , Ufmj

.

On the other hand, ∀m ∈ Max (R), we have an element em � 0 such
that the map ψem : Hom (F em

∗ R,R)m → Rm is surjective.

Consider
ê = max

{
em1 , . . . emj

}
.

Hence, ∀m ∈ Max (R) the map ψê : Hom
(
F ê
∗R,R

)
m
→ Rm is surjective.

By the Theorem 2.0.24, the map

ψ : Hom
(
F ê
∗R,R

)
→R

φ 7→φ
(
F ê
∗ c
)
,

is surjective. Thus, we obtain a map

φ : F ê
∗R→R
F ê
∗ c 7→1.

On the other hand, sinceRm is F -regular, eachRm is F -split, by Remark
4.4.5. By Corollary 4.3.8, R is F -split. Therefore, we can repeatedly
compose φ with a Frobienius splitting in order to get a splitling for a
larger e ∈ N. We conclude R is F -regular.

�

Furthermore, under certain conditions, F -regularity is preserved by lo-
calization at an element.
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Theorem 4.4.11. Let R be an F -finite Noetherian domain. Suppose that
d ∈ R is such that Rd is F -regular. If there exist e ∈ N and an R-module
map

π : F e
∗R→R

F e
∗d 7→ 1,

then R is F -regular.

Proof. Note that R is F -split along d because there exists π which is the
splitting of the morphism

ϕ : R→ F e
∗R

1 7→ F e
∗d.

By Remark 4.3.5, R is F -split.
Take c 6= 0 and the homomorphism

ψf : Hom
(
F f
∗ R,R

)
→ R

φ 7→ φ
(
F f
∗ c
)

for some f � 0. SinceRd is F -regular, we have that (ψf )d is surjective. Hence
we have that ψf ⊗Rd is surjective. Therefore, there exists and element such
that

(ψf ⊗Rd)

(
n∑
i=1

(
κi ⊗

ri
dmi

))
= 1 with ri ∈ R and ki ∈ F f

∗ R

⇒
n∑
i=1

(
ψf (κi)⊗

ri
dmi

)
= 1

⇒
n∑
i=1

( ri
dmi

ψf (κi)
)

= 1

⇒
∑n

i=1 (rid
m−miψf (κi))

dm
= 1 where m = max {mi | i = 1, . . . , n}

⇒
n∑
i=1

(
rid

m−miψf (κi)
)

= dm

⇒ψf

(
n∑
i=1

rid
m−miκi

)
= dm.
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This is, dm ∈ Imψf , for some m. Thus, there exists φ ∈ Hom
(
F f
∗ R,R

)
such that φ

(
F f
∗ c
)

= dm. Without loss of generality we assume that m = pt

with t ∈ Z.
Let θ : F t

∗R → R be a F -splitting. Note that π ◦ F e
∗ θ ◦ F t+e

∗ φ gives a
splitting for

R→ F e+t+f
∗ R

1 7→ F e+t+f
∗ c.

Thus R is F -split along c. Since c was an arbitrary element, we conclude
that R is F - regular.

�

Proposition 4.4.12. Let (R,m) be a F -finite Noetherian domain. Then R

is F -regular if and only if the completion R̂ at m is F -regular.

Proof. Note that if we take c 6= 0, then the image of c in R̂ is not zero.
Hence, for every e ∈ N we have a map

ψ : Hom (F e
∗R,R)→ R

φ 7→ φ (F e
∗ c)

which is surjective if and only if the map ψ⊗ R̂ remains surjective, by faith-
fulness of R̂.

Suppose that R̂ is F -regular. Then ψ is surjective for a large e. Thus R
is F -regular.

Now, suppose R is F -regular. We now show that there exists c ∈ R such
that R̂c is regular. Since R is a F -finite local domain, F∗R is torsion free.
Then F∗R⊗K ∼= Kα for some α ∈ N. Let {v1, . . . , vt}. We have te maps

F∗R F∗R⊗K Kα

vi vi ⊗ 1
a1,i

b1,i

e1 + · · ·+ aα,i
bα,i

eα
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This is, F∗R Kαϕ
is an inclusion. Let b =

∏α,t
s=1,i=1 bs,i. Note that

bϕ : F∗R→ Rα is also an inclusion, and so is bϕb : (F∗R)b → Rα
b . Thus, there

exists b such that (F∗R)b is a free module. We have that (̂F∗R)b
∼= R̂⊗(F∗R)b

is a free R-module. Hence
(

(̂F∗R)b

)
P

is free, ∀P ∈ Spec (R). We conclude

that (̂F∗R)b is regular, so it is F -regular.
�

Remark 4.4.13. Let R be a Noetherian domain whose regular locus is open.
Note that the regular locus is not empty. Indeed, consider the prime ideal
0. Then R0 is a zero-dimensional local domain, thus it is a field and so, it is
regular.

The regular locus is open, therefore it is the complement of closed set

V (I) = {Q ∈ Spec (R) |I ⊆ Q} ,

for some ideal I. Note that I has height at least one. Now, since I * P , for
any minimal prime P , by Prime Avoidence Theorem, we choose c ∈ I such
that Rc is regular.

Proposition 4.4.14. If R is a Noetherian domain whose regular locus is
open, then there is an element c 6= 0 such that Rc is regular.

Proof. First, note that R(0) is a field, and so it is regular. This is, the regular
locus is nor empty. Thus, there exists and ideal I, such that the regular locus
of R is V (I)C . Let c ∈ I \ {0}. We have that

V ({c}) ⊆ V (I) .

Therefore Spec (Rc) ⊆ V (I)C . �

Theorem 4.4.15. Let (R,m) be a F -finite Noetherian domain. The locus
points P ∈ Spec (R) where RP is F -regular is open.

Proof. Since R is F -finite, the regular locus is open. By Remark 4.4.13,
there exists d 6= 0 such that Rd is regular, thus F -regular. Note that for
every g ∈ R we have that (Rd)g is F -regular, because it is the localization of
a regular ring. Hence (Rg)d is also F -regular.

Consider the map

ψ : Hom (F e
∗R,R)→ R

φ 7→ φ (F e
∗d) .
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Let m be in the F -regular locus of R. Then Rm is F -regular and the morphism

ψm : (Hom (F e
∗R,R))m → Rm

φm 7→ φ (F e
∗d)m

is surjective for some e� 0. Thus m /∈ Supp (R/ Imψ), and Imψ * m. Take
g ∈ Imψ \ m. Then there exists φ ∈ Hom (F e

∗R,R) such that φ (F e
∗d) = g.

Hence we have

φg : F e
∗Rg → Rg

(F e
∗d)g 7→ 1.

By Theorem 4.4.11, Rg is F -regular.
Note that Pg ∈ Spec (Rg). Then g is not in the contraction of Pg in R.

Consider

U =
{
P ∈ Spec (R) |P = P c

g for some Pg ∈ Spec (Rg)
}
.

Since U is the complement of a closed set in R, it is open and m ∈ U .
Now, we show that RP is F -regular ∀P ∈ U .

Since (Rg)P
∼= RP and Rg is F -regular, by Theorem 4.4.10, we conclude

that RP , is F -regular for every P ∈ U .
�

Proposition 4.4.16. If R is a F -regular Noetherian domain, then it is nor-
mal.

Proof. Take
x

y
∈ Frac (R) integral over R, we show that

x

y
∈ R.

Since
x

y
is integral over R, we have an integral equation

(
x

y

)n
+ r1

(
x

y

)n−1

+ · · ·+ rn = 0

with ri ∈ R, ∀i = 1, . . . , n.
Note that we have the isomorphism

R [z] /
〈
zn + r1z

n−1 + · · ·+ rn
〉
→ R

[
x

y

]
f +

〈
zn + r1z

n−1 + · · ·+ rn
〉
7→ f

(
x

y

)
,
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with z an indeterminate.

Hence, R

[
x

y

]
is a finite integral extension of R. Using the division algo-

rithm, we obtain that the generators are{
1,
x

y
,

(
x

y

)2

, . . . ,

(
x

y

)n−1
}
.

Thus, there exists c 6= 0 such that cR

[
x

y

]
⊆ R.

Then c

(
R

[
x

y

])pe
⊆ R for all e ∈ N. This is, cxp

e ∈
(
yp

e)
, with e ≥ 0.

We have that

cxp
e

=sey
pefor some se ∈ S

⇒ F e
∗
(
cxp

e)
=F e
∗
(
sey

pe
)

⇒ xF e
∗ (c) =yF e

∗ (se)

Finally, since R is F -regular, there exists π ∈ Hom (F e
∗R,R), such that

π (F e
∗ c) = 1. Applying π, we get

x = y (F e
∗ (se)) .

Thus x ∈ (y), and so, y divides x. We conclude that
x

y
∈ R. �

Proposition 4.4.17. If R be a F -regular Noetherian domain, then R is
Cohen-Macaulay.

Proof. We may assume, without loss of generality, that (R,m, K) is a com-
plete local domain. Let x1, . . . , xn be a system of parameters for R. We
proceed by contradiction. Suppose these elements do not form a regu-
lar sequence. Then for some i there exists z /∈ (x1, . . . , xi−1) such that

zxi ∈ (x1, . . . , xi−1). Thus, zp
e
xp

e

i ∈
(
xp

e

1 , . . . , x
pe

i−1

)
for e ≥ 1, and so,

we get that
zp

e

xp
e

i = r1x
pe

1 + · · ·+ ri−1x
pe

i−1.

Take A = K[[x1, ..., xn]]. Note that A ⊆ R is a complete regular domain
and it is a finitely generated R-module. Consider the inclusions
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A A [z] R.

For each of these rings {x1, . . . , xd} is a system of parameters.
By Theorems 4.4.6 and Proposition 4.4.16, A is normal, so we take f a

minimal polynomial over A for z. Observe that

A [z] ∼= A [t] / (f (t)) ∼= K[[x1, ..., xn, t]]/ (f) .

This is A [z] is a Cohen-Macaulay ring. Denote B = A [z]. By Theorem
2.0.26, there exists π ∈ HomB (R,B) such that π (1) = c, for some c 6= 0.
Applying π, we get an equation in B:

π
(
zp

e

xp
e

i

)
= π

(
r1x

pe

1 + · · ·+ ri−1x
pe

i−1

)
zp

e

xp
e

i π (1) = π (r1)xp
e

1 + · · ·+ φ (ri−1)xp
e

i−1

zp
e

xp
e

i c = π (r1)xp
e

1 + · · ·+ π (ri−1)xp
e

i−1.

Now, since B is Cohen-Macaulay,
{
xp

e

1 , . . . , x
pe

n

}
is a system of parame-

ters. Then, xp
e

i is a non-zero divisor in A [z] /
(
xp

e

1 , . . . , x
pe

i−1

)
A [z]. Thus for

every e ∈ N,

czp
e ∈

(
xp

e

1 , . . . , x
pe

i−1

)
A [z] ⊆

(
xp

e

1 , . . . , x
pe

i−1

)
R,

which tells us that czp
e

= s1x
pe

1 + +̇si−1x
pe

i−1 with si ∈ R. Hence

zF e
∗ c = x1F

e
∗ s1 + · · ·+ xi−1F

e
∗ si−1

Seeing that R is F -regular, there exists π : F e
∗R→ R such that π (F e

∗ c) =
1 for a large e. Applying π, we have that z ∈ (x1, . . . , xi−1). Which is a
contradiction. Thus, R is Cohen-Macaulay. �

4.5 F-pure domians

The next F -singularity we aim to study is F -purity. This definition follows
from the usual definition of purity for maps.

Definition 4.5.1. Let R be a ring. An exact sequence of R-modules
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0 E ′ E E ′′ 0

is called pure if for every R-module M

0 E ′ ⊗M E ⊗M E ′′ ⊗M 0

is exact.

Definition 4.5.2. Let R be a ring. A morphism of R-modules

E ′ E

is called pure if for every R-module M

E ′ ⊗M E ⊗M

is injective. In particular, if the Frobenius map is pure, we say that R is
F -pure.

An example of a F -pure ring is the following definition.

Definition 4.5.3 ([CMSV18]). Let w1, . . . , wd be variables. For an integer
j such that 1 ≤ j ≤ d, we denote by Wj the j × (d + 1− j) Hankel matrix,
which has the following entries

Wj =


w1 w2 · · · wd+1−j
w2 w3 · · · · · ·
...

...
...

...
wj · · · · · · wd


For 1 ≤ t ≤ min{j, d + 1 − j}, the ideal It(Wj) of R = k[x1, . . . , xd] is the
one generated by the t-minors of Wj.

Any F -pure ring satifies the vanishing theorem in its sheaf cohomology
[HH89b]. To understand this concept, we show some properties from pure
maps.

Proposition 4.5.4. Let R be a domain and ϕ : M → N an R-linear map
that splits. Then, ϕ is pure.
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Proof. As ϕ splits, we have that N = M⊕S for some R-module S. Consider
an R-module T . Then

N ⊗R T = (M ⊗R T )⊕ (S ⊗R T ) .

Hence the map ϕ⊗R IdT : M ⊗R T → N ⊗R T is injective. We conclude
ϕ is pure. �

Proposition 4.5.5. Let ϕ : R→ A be a faithfully flat extension of domains.
Then, ϕ is pure.

Proof. Consider the following exact sequence

0 Ker (ϕ) R A Coker (ϕ) 0.

It induces the exact sequence

0 Ker (ϕ)⊗R A A A⊗R A Coker (ϕ)⊗R A 0.

Note that the map A → A ⊗R A is injective, so Ker (ϕ) ⊗R A = 0. Now
let T be a R-module. We have that the map T ⊗R A → T ⊗R A ⊗R A is
injective. As A is a faithfully flat R-module, this happens if and only if the
map

R⊗R T → A⊗R T

is injective. Hence, ϕ is pure. �

Definition 4.5.6. Consider the homomorphism of free R-modules of finite
rank

ϕ : R⊕n → R⊕m.

We define the map

ϕ∗ : Hom (R⊕m, R)→ Hom (R⊕n, R) .

If M is a free module of finite rank, then we define

M∗ = Hom (M,R) .

We stick with this notation throughout the rest of this chapter.

Theorem 4.5.7. Let R be a ring,
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0 E ′ E E ′′ 0

be an exact sequence, and

ϕ : F1 F0

be a homomorphism of free modules of finite rank. Let M = Cokerϕ and
M ′ = Cokerϕ∗. Then

Ker (M ′ ⊗ E ′ →M ′ ⊗ E) ∼= Coker (Hom (M,E)→ Hom (M,E ′′)) .

Proof. Consider

E : 0 E ′ E E ′′ 0α β

and

F : F1 F0 M 0.
ϕ π

We have the following sequences

0 E ′′∗ E∗ E ′∗
β∗ α∗

and

0 M∗ F ∗0 F ∗1 M ′ 0.π∗ ϕ∗ θ

Form the following double complex

0 0 0

M∗ ⊗ E ′ M∗ ⊗ E M∗ ⊗ E ′′

F ∗0 ⊗ E ′ F ∗0 ⊗ E F ∗0 ⊗ E ′′

F ∗1 ⊗ E ′ F ∗1 ⊗ E F ∗1 ⊗ E ′′.

The modules Fi are free, so they are projective. In addition, Hom (Fi, •) ∼=
Hom (Fi, R)⊗ •, so we get
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0 0 0

0 M∗ ⊗ E ′ M∗ ⊗ E M∗ ⊗ E ′′

0 F ∗0 ⊗ E ′ F ∗0 ⊗ E F ∗0 ⊗ E ′′ 0

0 F ∗1 ⊗ E ′ F ∗1 ⊗ E F ∗1 ⊗ E ′′ 0.

By the right exactness of the tensor product, we have the sequence

F ∗0 ⊗G F ∗1 ⊗G M ′ ⊗G 0.
ϕ∗⊗IdG θ⊗IdG

for every R-module G. Then, M ′ ⊗ G ∼= Coker (ϕ∗ ⊗G). Now we complete
the complex and simplify the notation

0 0 0

0 M∗ ⊗ E ′ M∗ ⊗ E M∗ ⊗ E ′′

0 F ∗0 ⊗ E ′ F ∗0 ⊗ E F ∗0 ⊗ E ′′ 0

0 F ∗1 ⊗ E ′ F ∗1 ⊗ E F ∗1 ⊗ E ′′ 0

0 M ′ ⊗ E ′ M ′ ⊗ E M ′ ⊗ E ′′ 0

0 0 0 .

Applying the Snake’s Lemma, we have the exact sequence

M∗ ⊗ E ′ M∗ ⊗ E M∗ ⊗ E ′′

M ′ ⊗ E ′ M ′ ⊗ E M ′ ⊗ E ′′.
d
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We have that
M∗ ⊗ E ′′

Ker (d)
∼= Im (d)

Note that, Ker (d) = Im (IdM∗ ⊗β) y Im (d) = Ker (IdM ′ ⊗α). Therefore,

Coker (IdM∗ ⊗β) =
M∗ ⊗ E ′′

Im (IdM∗ ⊗β)

=
M∗ ⊗ E ′′

Ker (d)

= Im (d)

= Ker (IdM ′ ⊗α) .

�

Corollary 4.5.8. Let R be a Noetherian ring. Then the exact sequence

0 E ′ E E ′′ 0

is pure if and only if for every finitely presented module N , the morphism

θ : Hom (N,E)→ Hom (N,E ′′)

is surjective.

Proof. For this part, we use a finitely presented module N . Then, we have
an exact sequence

0 K F N 0w ϕ

where both K and F are free module of finite rank. Consider the R-module
map

w∗ : F ∗ → K∗.

Note that F ∗ and K∗ are finitely generated. Hence, Im (w∗) is finitely
generated. Let M = Coker (w∗), which is finitely presented.

Now, suppose the exact sequence from the statement is pure. By Theorem
4.5.7, we have the exact sequence

Hom (N,E) Hom (N,E ′′) M ⊗ E ′ M ⊗ E.j d h
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Since h is injective, we get Im d = Ker d = 0. We conclude that j is
surjective.

For the converse, we use that M is finitely presented. Note that w∗∗ = w
and Cokerw∗∗ = N . Likewise, applying Theorem 4.5.7, we get the exact
sequence

Hom (M,E) Hom (M,E ′′) N ⊗ E ′ N ⊗ E.d̃ h̃

Then Ker h̃ = Im d̃ = 0. As the functor •⊗N is right-exact, we conclude
that the exact sequence in the statement is pure.

�

Corollary 4.5.9. Let R be a Noetherian ring. Then the exact sequence

0 E ′ E E ′′ 0.

If E ′′ is finitely presented, then the exact sequence is pure if and only if it
splits.

Proof. Let θ : E → E ′′ be the morphism in the statement. Suppose the
sequence is pure. By the first part, we have

Hom (E ′′, E) Hom (E ′′, E ′′) 0.

In particular, there exists a ϕ ∈ Hom (E ′′, E) such that it is the preimage
of the identity homomorphism. Therefore

(ϕ ◦ θ) (1) = 1.

Finally, let N be a finitely presented module, and be ϕ a splitting for
θ. We show that for every β ∈ Hom (N,E ′′), there exists an element in
α ∈ Hom (N,E) such that θ ◦ α = β. Take α = ϕ ◦ β. Then

(θ ◦ α) (x) = (θ ◦ ϕ ◦ β) (x)

=β (x) .

By Corollary 4.5.8, we are done. �

Corollary 4.5.10. Let ϕ : M → N be a pure map of R-modules. Then ϕ is
split if N/ϕ (M) is finitely presented.

Proof. Follows from Corollary 4.5.9. �
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Theorem 4.5.11. Let R be a Noetherian subring of S. Then

ψ : R S

is pure if and only if R is a direct summand of each finitely generated R-
module N of S such that R ⊆ N . In fact, if S is module-finite over R, then
ψ is pure if and only if R is a direct summand of S.

Proof. First suppose that ψ is pure. Since R⊗RM ↪→ S⊗RM , we have that
R ⊗R M ↪→ N ⊗R M is injective for every R-module M . By the Corollary
4.5.9, the sequence splits, this is N ∼= R⊕ Coker i.

Now,we show that ψ is pure. We may think S as an R-module, so it is
finitely generated and thus it is finitely presented. Therefore, S ∼= R ⊕M
for some R-module M , this is ψ splits. By Corollary 4.5.9, ψ is pure.

The second part follows. �

Corollary 4.5.12. Let R be an excellent Noetherian domain whose fraction
field is F -finite. Then R is F -split if and only if it is F -pure.

Proof. By Theorem 4.2.5, R is F -finite. By Corollary 4.5.8, we are done. �

4.6 F-pure regular domains

In last section of this chapter we define F -pure regularity and its properties.
For instance, it is cosely related to F -purity and similar F -splitting.

Definition 4.6.1. Let c be an element in a domain R. Then R is said to be
F -pure along c if there exists e > 0 such that the map

λec : R→ F e
∗R

1 7→ F e
∗ c

is pure as R-module map. Moreover, if R is F -pure along c for every c ∈
R− {0}, then it is said to be F -pure regular.

Remark 4.6.2. A domain R is F -pure if and only if it is F -pure along 1.

Remark 4.6.3. By Theorem 4.2.5 and Corollary 4.5.12. If R is an F -finite
Noetherian domain, then the map λec is pure if and only if it splits.
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Remark 4.6.4. If R is F -finite, then F -pure regularity is equivalent to F -
regularity.

Lemma 4.6.5. Let R be a domain an A and R-algebra.

1. If M → N and N → Q are pure homomorphisms of R-modules, then
the composition is also pure.

2. If a composition of R-module maps

M → N → Q

is pure, then M → N is pure.

3. If M → N is a pure R-linear map, then

A⊗RM → A⊗R N

is a pure A-linear map.

4. If M → N is a pure A-linear map, then it is also pure as R-linear map.

5. The R-linear map M → N is pure if and only if MP → NP is pure for
each P ∈ Spec (R);

6. A faithfully flat map is pure.

7. Let (Λ,≤) be a direct set with a least element λ0, {Nλ}λ∈Λ be a direct
limit system of R-modules, and M → Nλ0 be a R-linear map. Then
M → lim→λNλ is pure if and only if M → Nλ is pure ∀λ ∈ Λ.

8. Let (R,m) be a local ring. Then a map of modules R → N is pure if
and only if E ⊗R R → E ⊗R N is injective, where E is the injective
hull of R/m.

Theorem 4.6.6. Let R be a domain.

1. If R is F -pure along a product cd, then it is also F -pure along c and
d. In paricular, if R is F -pure along some element, then R is F -pure.

2. Let R be F -pure regular. If W ⊆ R is a multiplicative set, then RW is
F -pure regular.
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3. Let ϕ : R → T be a pure homomorphism of domains. If T is F -pure
regular, then R is also F -pure regular. In particular, if ϕ is faithfully
flat and T is F -pure regular, then R is F -pure regular.

4. Let R1, . . . , Rn be domains. If R = R1 × · · · × Rn id F -pure regular,
then each Ri is F -pure regular.

Proof.

1. As the map ×d is R-linear, so it is ×F∗d. On the other hand, R is
F -pure along cd, so there exists e > 0 such that λecd is pure. Note that
λecd = ×F∗d ◦ λec. By Lemma 4.6.5, we get that λec is pure. Likewise,
we get that λed is pure, because R is commutative. For the second part,
suppose R is F -pure along an element c. As c = c · 1, we have that R
is F -pure along 1. By Remark 4.6.2, R is F -pure.

2. Let a ∈ RW \ {0}. The a =
c

d
with c 6= 0 and d ∈ W . As R is F -pure

along c, there exists e > 0 such that the map λec is pure. By Lemma
4.6.5 and the isomorphism (F e

∗R)W
∼= F e

∗RW , thet map λec/1 is also
pure.

On the other hand, the map

ψ1/d : RW → RW

1 7→ 1

d

is an isomorphism of RW -modules. Hence the RW -module map

F e
∗ψ1/d : F e

∗RW → F e
∗RW

1 7→ 1

F e
∗d

is also an isomorphism of RW -modules. As ψ1/d is pure, we get that
F e
∗ψ1/d is a pure RW -linear map. Therefore, the composition F e

∗ψ1/d ◦
λec/1 is a pure RW -linear map. Since F e

∗ψ1/d ◦ λec/1 = λec/d, we are done.

3. First, note that ϕ is injective, because it is pure. Take c ∈ R \ {0}.
Then T is F -pure along ϕ (c). And so, there exists e > 0 such that
λeϕ(c) is a pure T -linear map.
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Consider the composition ϕ ◦ λeϕ(c). It is also a pure T -linear map, and
so, a pure R-linear map. In addition, we have the following commuta-
tive diagram

R T

F e
∗R F∗eT

ϕ

λec λe
ϕ(c)

F e
∗ (ϕ)

By Lemma 4.6.5, λec is pure. Now, if ϕ is faithfully flat, then it is pure
by Lemma 4.6.5.

4. Note that the set

W = R1 × · · · ×Ri−1 × {1} ×Ri+1 × · · · ×Rn

is a multiplicative set of R. In addition, the map

π : RS → Ri(
r1

s1

, . . . ,
ri
1
, . . . ,

rn
sn

)
7→ ri

is an isomorpshism. Thus, we show that RW is F -pure regular. By the
number 2 of this theorem, we are done.

�

Remark 4.6.7. Let R be F -pure along some element c. Then R is F -pure.
Moreover, the map λec is pure. This implies that

F∗λ
e
c : F∗R→ F∗ (F e

∗R)

F∗1 7→ F∗ (F∗c)

is a pure F∗R-linear map. By Lemma 4.6.5, it is also a R-linear map. This
the composition F∗λ

e
c ◦F is F -pure. Note that F∗λ

e
c ◦F = λe+1

c . We conclude
that for each n ≥ e, the map λe+1

c is pure.

Theorem 4.6.8. A regular local ring (R,m) is F -pure regular.
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Proof. Note that ∩e>0m
[pe] = 0, by the Krull Intersection theorem. Let

c ∈ R \ {0}. Thus there exists e > 0 such that c /∈ m[pe]. We now prove that
λec is pure. Let E be the injective hull of R/m. By Lemma 4.6.5, it suffices
to check that λec ⊗ E is injective.

Let {x1, . . . xn} be the minimal set of generators for m. As

E = lim
t→inf

R/
(
xt1, . . . , x

t
n

)
,

we have that
F e
∗R⊗ E = lim

t→inf
R/
(
xtp

e

1 , . . . , xtp
e

n

)
.

The element λec ⊗ E (1⊗ e) = F e
∗ c⊗ e. Therefore, as c /∈ m[pe], it is not zero

in F e
∗R ⊗ E. This is, the socle of E in R/m is not in the kernel of λec ⊗ E,

hence it is an injective map. By Lemma 4.6.5, λec ⊗ E is pure. We conclude
(R,m) is F -pure regular. �

Proposition 4.6.9. Let R be a F -pure regular domain. Then R is normal.

Proof. Let
r

s
∈ Frac (R) be an integral element over R. Then there exists a

minimal polynomial f (x) = xn + a1x
n−1 + · · · + a0, with ai ∈ R, such that

f
(r
s

)
= 0. We have that

rn + sa1r
n−1 + · · ·+ sna0 = 0

which implies that rn ∈ (s) and r ∈ (s). Thus there exists h ∈ N such that
for each n

(r, s)n+h = (s)n (r, s)h

Let c = sh. Then shrn ∈ (s)n (r, s)h ⊆ (s)n. Take n = pe. Consider the
map λec which is pure and induce the injective map

R/ (s)→ R/ (s)⊗R F e
∗R
∼= F e

∗ (R/ (s))

[r]→ F e
∗ [rnc] .

Note that [r] is in the kernel of this map, because rn ∈ (s). This is, r ∈ (s),

and so, s|r. We conclude that
r

s
∈ R.

�
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Proposition 4.6.10. Let R be a domain. The set

I = {c ∈ R | R is not F -pure along c}

is closed under multiplication by R and R \ I is multiplicative closed. More-
over, if I is closed under addition, then it is a prime ideal.

Proof. First we show that I is closed under multiplication by elements in R.
Let c ∈ I and r ∈ R. Proceed by contradiction. Suppose rc /∈ I. Then R is
F -pure along rc, which implies that it is also F -pure along c.

Secondly, let c, d /∈ I. Then there exist e and l intergers such that the
maps λec and λld are pure. Consider the induced pure R-linear map

F e
∗
(
λld
)

: F e
∗R→ F e

∗
(
F l
∗R
)

F e
∗ 1 7→ F e

∗
(
F l
∗d
)
.

Note that F e
∗
(
λld
)
◦λec = λe+lcpe and it is pure. Thus, cp

e
d /∈ I. Suppose cd ∈ I.

As cp
e−1 ∈ R, cp

e
d ∈ I, which is a contradiction. In addition, if R \ I 6= ∅,

then 1 ∈ R \ I. Otherwise, R would be F -pure regular.
Finally, if I is closed under addition, then I is a prime ideal. �
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Chapter 5

Frobenius in Valuation Rings

In this chapter we study the Frobenius map on valuation domains. Moreover,
we relate F -singularities with this kind of rings. The main goal is describe
how Frobenius acts on this class of rings.

5.1 Flatness and purity of Frobenius in Val-

uation rings

Before starting the study of F -singularities in valuation rings we recall an
important property about their modules.

Lemma 5.1.1. A finitely generated torsion free module over a valuation ring
is free. In particular, a torsion free module over a valuation ring is flat.

Proof. Let V be a valuation domain and M be a finitely generated torsion
free V -module. Let {m1, ...,mn} be a minimal set of generators of M .

We proceed by contradiction. Suppose there exists a non-trivial relation
among the generators. Consider v1, . . . , vn ∈ V be such that

v1m1 + · · ·+ vnmn = 0.

The set of ideals of V is totally ordered so, without loss of generality, we
assume that

(vi) ⊆ (v1) ,

∀i = 2, . . . , n. This is, vi = aiv1 ∀i = 2, . . . , n. Hence, we have that

v1 (m1 + a2m2 + · · ·+ anmn) = 0.
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Since M is torsion free, we have that

m1 + a2m2 + · · ·+ anmn = 0,

and so, m1 = − (+a2m2 + · · ·+ anmn). The minimal generating set is
{m2, ...,mn}, which is a contradiction. Thus, vi = 0 for every i = 1, . . . , n.

We conclude that, {m1, ...,mn} is a free generating set for M , and thus,
M is free.

Now, for the second part, consider N a torsion free module. Then N is
the direct union of every finitely generated subomdule G. Since the direct
union of flat modules is flat, we get that N is flat. �

Proposition 5.1.2. Let (V,m, K) be a valuation domian of characteristic p.
Then the Frobenius map is faithfully flat.

Proof. Note that, because V is a domain, F∗V is a torsion free V -module.
By Lemma 5.1.1, F∗V is flat, and thus, F is a flat homomorphism. Let M
be a nonzero V -module. There exists an associated prime P of M . We have
that

V

P
⊗V F∗V ↪→M ⊗V F∗V.

Note that 0 6= V

mF∗V
⊆ V

PF∗V
. Since

V

P ⊗V F∗V
∼=

V

PF∗V
, we have that

M ⊗V F∗V 6= 0. We conclude that F∗V is faithfully flat.
�

Corollary 5.1.3. Every valuation ring (V,m, K) of prime characteristic is
F -pure.

Proof. By Theorem 4.5.5, F is pure, because it is faithfully flat. �

5.2 F-finite Valuation Rings

Proposition 5.2.1. Let K be an F -finite field. A valuation ring V of K is
F -finite if and only if F∗V is a free V -module.

Proof. First, suppose that F∗V is a free V -module. Since K ⊗R F∗V ∼= F∗K
as K-vector spaces, we have that rankK F∗K = rankV F∗V . By hypothesis,
K is F -finite, so [FK : K] <∞. Thus, rankF∗V <∞, this is, V is F -finite.

Now, let V be F -finite. Then F∗V is finitely generated. As F∗V is torsion
free, by Lemma 5.1.1, it is free. �
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Corollary 5.2.2. Let V be a F -finite valuation domain. Then, V is F -split.

Proof. As V is F -pure, we have the following exact sequence

0 V F∗V F∗V/V 0.

Note that F∗V is a finite rank torsion-free free module. Thus, F∗V/V is
finitely generated. In addition, V is a finitely generated module. By Corollary
4.5.10, V is F -split. �

Lemma 5.2.3. Let R be a Noetherian domain such that Frac (R) is F -finite.
Then R is F -finite if and only if there exists ψ ∈ HomRp (R,Rp) such that
ψ (1) 6= 0.

Proof. First, we suppose R is F -finite. Since Frac (R) is F -finite, it is F -
split. Let π be a Kp-linear splitting of Frobenius. This is, π (1) = 1p. Let

{fp1 , . . . , f pn} a generating set of R as Rp-module, and
api
bpi

their images under

π. Denote the restriction of π to R as φ. Now, let cp =
∏n

i=1 b
p
i ∈ Rp.

We get the map ψ = cpφ, which is Rp-linear. Note that ψ : R → Rp, and
ψ (1) = cp 6= 0.

For the converse, suppose there exists ψ ∈ HomRp (R,Rp) such that
ψ (1) 6= 0. Consider the map

θ : R→ R∨∨

r 7→ er,

where R∨∨ = HomRp (HomRp (R,Rp) , Rp) and er is the evaluation map at
r. Note that if x ∈ R is a nonzero element, then we have the map γ =
ψ ◦ (×xp−1), and so γ (x) = xpψ (1) 6= 0. We see that θ is injective, take
x = z − y for any two different elements y, z in R.

We prove that R∨ = HomRp (R,Rp) is a Rp-finitely generated module.
Indeed, let M be a maximal free Rp-submodule contained in R. Then

rank (M) = dimKp (M ⊗Rp Kp) = dimKp K = [K : Kp] ,

and so M⊗RpKp ∼= R⊗RpKp as Kp-vector spaces. Therefore R/M⊗RpKp =
0, which implies thath R/M is a torsion module. Considering the exact
sequence

0 M R R/M 0,
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we get that R∨ ↪→M∨, because the dual of a torsion module is zero. Since M
is finitely generated, we have that M∨ is also finitely generated as Rp-module.
Thus, R∨ is finitely generated, and so R∨∨ is a finitely generated Rp-module.
Since R ⊆ R∨∨, we conclude R is a finitely generated Rp-module. �

Theorem 5.2.4. Let R be a Noetherian domain whose fraction field is F -
finite. If R is F -split, then it is F -finite.

Proof. Let π ∈ HomRp (R,Rp) be a splitting. Thus, π (1) = 1. By Lemma
5.2.3, R is F -finite. �

Now we state the equivalence between F -splitness and F -finiteness, along
with excellence. This is, we now state the main result of this thesis.

Corollary 5.2.5. Let V be a discrete valuation domain whose field of frac-
tions is F -finite. Then the following are equivalent:

1. V is F -split;

2. V is F -finite;

3. V is excellent.

Proof. As V is a discrete valuation domain, it is Noetherian. Applying The-
orems 5.2.4 and 5.2.2 we get the equivalence between F -splitness and F -
finiteness. Now, Theorem 4.2.5 gives us the equivalence between F -finiteness
and excellent rings. �

5.3 F-pure regular Valuation Rings

Finally, we give some statements before the extended version of the main
theorem.

Proposition 5.3.1. Let (V,m) be a valuation domain. The set of elements
along which V fails to be pure is the prime ideal

Φ = ∩e>0m
[pe].
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Proof. Let F∗c ∈ Φ. Then F∗c ∈ m[pe] for every e > 0. Consider the residue
field of V , K. Then the map

λec ⊗V K : V ⊗V K → F e
∗V ⊗V K

1⊗V k 7→ F e
∗ c⊗V k.

As cp
e ∈ m[pe], we have that F e

∗ c ⊗V k = F e
∗ 1 ⊗V [0]. Hence, λec is not pure

for every e > 0.
Now, consider an element c /∈ m[pe] for some e > 0, and the set Σ of

submodules of F e
∗V containing F e

∗ c. Then Σ is a directed set under inclusion
with least element the module (F e

∗ c). Take F e
∗N ∈ Σ. There exists a map

λNc : V → F e
∗N

1 7→ F e
∗ c.

In addition, by Lemma 5.1.1, F e
∗N is free. Moreover, F e

∗ c /∈ mF e
∗N ; other-

wise, F e
∗ c ∈ F e

∗m
[pe], and c ∈ m[pe], which is a contradiction. By Nakayama’s

Lemma, F e
∗ c is part of a basis for F e

∗N . This implies that λNc splits, and so
it is pure.

On the other hand, if F e
∗N ⊂ F e

∗M are elements of Σ, then we have the
commutative diagram

V F e
∗N

F e
∗M.

λNc

λMc

Therefore, we have a direct system consisting of elements

AF e
∗N = F e

∗N

indexed by Σ, and injections as the morphisms from the definition. By
Theorem 2.0.27, the direct limit is F e

∗V . As the map λ
(F c
∗ )

c is V -linear, λec :
V → F e

∗V is pure, by Lemma 4.6.5.
Finally, by Proposition 4.6.10, Φ is a prime ideal. �

Corollary 5.3.2. For a valuation ring (V,m), the quotient V/Φ is a F -pure
regular domain. Furthermore, V is F -pure regular if and only if Φ = 0.
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Proof. Note that V/Φ is a domain whose ideals inherit the order from V . In
addition, its unique maximal ideal is m + Φ.

Let x =
r + Φ

s+ Φ
∈ Frac (V/Φ) be such that x /∈ V/Φ. Then r does not

divide s in V , and so,
r

s
/∈ V . As V is a valuaton domain,

s

r
∈ V . Hence

x−1 ∈ V/Φ.
Finally, since

[
∩e>0m

[pe]
]

= [0], we conclude that V/Φ is F -pure regular.
The second statement follows from Proposition 5.3.1. �

Theorem 5.3.3. Let (V,m) be a valuation domain. Then V is F -pure regular
if and only if it is either a field or a DVR.

Proof. First, suppose that V is F -pure regular. We proceed by contradiction.
Suppose there exists P ∈ Spec (V ), such that 0  P  m.

Take x ∈ m \ P and c ∈ P \ {0}. If c|xn for some n, then there exists
q ∈ V such that xn = qc. This implies that xn ∈ (c) ⊂ P . Thus x ∈ P ,
which is a contradiction. Hence xn|c for every n. In particular, take n = pe

with e ∈ N. We have that c ∈
(
x[pe]

)
⊂ m[pe]. This is, c ∈ Φ. By Corollary

5.3.2, V is not F -pure regular, which is a contradiction. Therefore, V has
dimension at most one.

Now, suppose that V is F -regular. We show ΓV is isomorphic to Z. Let
h be the infimum of ΓV . Then, h is positive. Indeed, let c ∈ m. Note that

the sequence

{
v (c)

pe

}
e>0

converges to 0 when e→∞. In fact, suppose that

there exists an element x ∈ V such that for some e

0 < v (x) <
v (c)

pe
.

Then 0 < v
(
xp

e)
< v (c), and so, v

(
xp

e

c

)
< 0, this implies that xp

e|c.

Therefore, c ∈ (x)[pe] ⊂ m[pe], which contradicts the fact that R is F -pure
regular.

We show that h ∈ ΓV . Note that there exists g such that 0 < g < h.
Suppose h /∈ ΓV . Then there exist elements z, y ∈ m such that

h < v (z) < v (y) < h+ g.

We have that 0 < v
(y
z

)
< g < h, which is a contradiction. Hence, h ∈ ΓV .
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Suppose there exists an element α ∈ ΓV such that h - α. By the division
algorithm α = qh + r, with q, r ∈ R. Therefore, r ∈ ΓV and r < h which
is a contradiction. Thus ΓV = 〈h〉. This is, ΓV ∼= Z, this isomorphism
also preserves the order. Hence, by Theorem 3.3.6 V is Noetherian and by
Corollary V 3.3.10 is a discrete valuation domain. �

The following is the extended version of the Theorem 5.2.5. It gives us
an extra equivalence which uses the strong relation between F -regularity and
F -pure regularity.

Theorem 5.3.4 ([DS16]). Let (V,m) be a discrete valuation domain with
F -finite fraction field. The following are equivalent

1. V is F -split;

2. V is F -finite;

3. V is excellent;

4. V is F -regular.

Proof. By Theorem 5.2.5, we know the equivalence among 1, 2 and 3.
Now, we will show that V is F -regular if and only if it is F -finite. Suppose

V is F -regular. By Theorem 4.4.5, V is F -split. Therefore it is F -finite.
Conversely, by Theorem 5.1.2, F∗V is faithfully flat in particular, it is flat.
Hence by Kunz Theorem 4.1.14, V is regular. Finally, by Theorem 4.4.6, we
have that V is F -regular. �

Remark 5.3.5. We have that the ring of formal series K[[x]] satisfies The-
orem 5.2.5 if and only if K is F -finite. Moreover, K[[x]] is F -finite if and
only if K is F -finite. In addition, K[[x]] is always F -split and F -regular. De-
spite this, it is not a counter-example for Theorem 5.2.5, since this theorem
requieres Frac (K[[x]]) to be F -finite.

However, not every discrete valuation domain with F -finite fraction field
is F -finite. In order to give an example of this, we first mention a lemma.

Lemma 5.3.6 ([DS16]). Let V be a valuation domain of an F -finite field K
of prime characteristic p. If V is F -finite, then

[Γ : pΓ] [k : kp] = [K : Kp]

where Γ is the valuation group and k the residue field of V .
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Example 5.3.7. Consider Fp((t)) which is F -finite and the fraction field of
Fp[[t]]. Note that we have a valuation

ṽ : Fp[[t]]→ Z
t 7→ 1.

which is discrete.
As Fp (t) is countable and Fp((t)) is uncountable, there exists a trascendent

element in Fp[[t]] transcendental over Fp (t), namely,

f (t) =
∞∑
n=1

ant
n.

The elements t and f are algebraically independent, so we have the in-
jective map

ψ : Fp [x, y] ↪→ Fp[[t]]
x 7→ t

y 7→ f.

This induces the extension of fields

Fp (x, y) ↪→ Fp((t)).

We restrict the valuation ṽ to Fp (x, y), call it v, which is also discrete.
Let V be the valuation domain associated to v. We have that [L : Lp] = p2

and [Γv : Γvp ] = [Γv : pΓv] = p. On the other hand, let u ∈ Fp (x, y) with
image in Fp((t))

∞∑
n=0

bnt
n.

If u ∈ V , then v (u) ≥ 0. Therefore, v (u− b0) > 0. This is, u ∼ b0 in V/mV .
Thus, we have

[k (v) : k (vp)] = [k (v) : k (v)p]

=
[
Fp : Fpp

]
= [Fp : Fp]
= 1,

where k (v) is the residue field of V . By Theorem 5.3.6, V is not F -finite.
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