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Chapter 1

Introduction

Let K a field. An algebraic affine variety is the set of points x € K™ such
that fi(x) = 0Vi € {1,...,n}, where fi,...,fn € R = K[x1,...,24). Al-
gebraic geometry employs commutative algebra to study properties such as
dimension, irreducibility, and smoothness. In this work, we focus on smooth-
ness. A point where an algebraic variety is not smooth, or regular, is called a
singularity. In order to identify such points, we study the corresponding quo-
tient ring, R/I where I = (f1,..., fn). In prime characteristic p we employ
the Frobenius morphism

F:R— R

r—rP

to detect, classify, and measure singularity.

If R is reduced, singularities are studied via a module of p®-roots R'/?".
If R is not reduced, there a more general version of this module denoted by
FfR. A celebrated theorem of Kunz | | establishes that R is regular if
and only if FR is faithfully flat for every e > 1 (equivalently for some e > 1).
This theorem opened the door to classify singularities via the structure of
F?R as an R-module.

If F¢R is a finitely generated R-module, we say R is F-finite. In particular
for F-finite local rings, Kunz’s Theorem states that R is regular if and only
if F°R is a free module. We say that R is strongly F-regular if the growth of
the free part of FR has the same rate as the grow of its rank (see Definition
4.4.1). A ring is F-split if F°R has positive free rank. There are weaker
versions of this singularity considering purity of maps instead of free rank.



These are called F-pure regularity and F-purity. These properties have been
mostly studied in Noetherian rings. Nonetheless, recently non-Noetherian
rings are being considered as well. In particular, Datta and Smith | ]
studied the behavior of Frobenius map in valuation domains (see Chapter
5). In this thesis we study this topic for both Noetherian and non Notherian
valuation domains. In particular, the main goal of this thesis is to give a
self-contained exposition of the following result.

Theorem 1.0.1 (| ], see Theorem 5.3.4). Let (V,m) be a discrete valu-
ation domain with F-finite fraction field. The following are equivalent

1. 'V s F-split;
2. V is F-finite;
3.V 1s F-reqular.

To achieve our goal, we focus our attention on four objects: valuations,
valuation domains, Frobenius morphism, and their relation. We now present
a summary of each chapter of this thesis.

In Chapter 2, we recall some theorems which are used in certain proofs
throughout this thesis. References for these theorems are classical books in
commutative algebra | : ) ].

Chapter 3 is devoted to study valuation domains and their associated val-
uations. In particular, we start with valuations and their properties. Later,
we define valuations domains and establish the bijection between these two
objects. At the end of this chapter, we show the existence of valuations.
This material is based on books in integral closure and commutative algebra
[HS06, ]

In Chapter 4, we define the Frobenius homomorphism along with the
module FfR and its equivalences. In addition, we study several types of
singularities according to the behavior of Frobenius map, and state properties
and relations among them. We define excellent rings and their relation with
Frobenius singularities. For instance, a Noetherian domain is F-finite if and
only if it is excellent and its fraction field is F-finite. References for this
chapter are notes in Frobenius and methods in prime characteristic |

].

In Chapter 5 we study valuation domains via Frobenius. By Kunz’s

Theorem, the Frobenius map is flat for valuation domains. Moreover, these

’



domains are F-pure, and if the valuation domain is excellent and Noethe-
rian, it is also F-split. Hochster and Huneke | | introduced strongly
F-regularity which is only defined for Noetherian rings. Datta and Smith
[ ] introduced a more general concept called F-pure regularity. A valu-
ation domain is F-pure regular if and only if it is Noetherian,. Therefore in
the Noetherian case both definitions are equivalent. Finally, we include an
example from the paper | ] to illustrate that not every valuation domain
is F-split (see Example 5.3.7). In particular, there exists a ring that is not
F-finite, nor excellent, nor F-regular.



Chapter 2

Background

Troughout this section we give facts used in certain proofs of this work.
However, we don’t demonstrate each of them since they can be found in
many references | , , ]. First we start by giving theorems
which we use in Chapter 3, then theorems used in Chapter 4, finally, theorems
used to study Frobenius on valuation rings in Chapter 5. First, we need some
definitions.

From algebraic geometry we know that there exists a correspondence
between points in C and maximal ideals in C [z]. This idea can be taken to
any ring through the following definition.

Definition 2.0.1. Let A be a ring. We define the prime spectrum of A
as the set

Spec A ={P C A | P prime ideal of A}.

Remark 2.0.2. Lat A be a ring and I an ideal of A. Then we consider the
set
V(I)={PeSpecA|ICP}.

Consider a family of ideals {/)},.,. Then

MeaV (1) =V (Z A) .

AEA

Moreover is Iy, ..., I, are ideals, we have that
UL V(L) =V (Lin---N1,).

Therefore, Spec A is a topological space where V' (I) is a closed set VI ideal.

6



Definition 2.0.3. Let R be a ring. We say R is normal if it is reduced and
every element of the fraction field of R, Frac (R), that is integral over R is
n R.

If R is a domain, then the integral closure of Frac (R) is its normalization.
This means that we can always get a normal ring out of a domain. We show
an example of this.

Clz,y]
3_

Example 2.0.4. Consider the ring 2 = C[t?,#°]. We have that R = 520

Note that the equation f (z) = 23 — y? is de cusp in R

We have that R is not normal since the element ¢ is a integral element
over R. Therefore R = C|t]. The map

R < R,

induces a map

C—-V(f)

sending the ¢-axis to the cusp.

—

\

The normalization of a domain preserves properties of the domain. For
example, consider a domain R. If R is a K-algebra finitely generated, with
K a field, then

dim R = dim R.

To understand this, the following theorem is useful.

Theorem 2.0.5 (Lying over and going up). Suppose R C S is an integral
extension of rings. Given a prime P C R, there exists a prime Q C S with
RN @ = P. Moreover, QQ may be chosen to contain any given ideal )y
satisfying the condition RN Q4 C P.

Now we give some definitions in order to talk about Cohen-Macaulay
rings.



Definition 2.0.6. Let R be a ring and P be a prime ideal. The height of P,
denoted ht P, is the supremum of lengths of finite strictly ascending chains
of prime ideals contained in P.

Definition 2.0.7. Let R be a ring, M be a finitely generated module and
I be an ideal such that IM # M. Then the depth of I on M, denoted
depth (I, M), is the length of a maximal M -sequence in I.

Definition 2.0.8. Let (R, m) be a local ring. Then R is said to be Cohen-
Macaulay is depthm = ht m.

Furthermore we talk about local rings whose number generators of the
maximal ideal is equal to the dimension.

Definition 2.0.9. Let (R, m) a Noetherian local ring of dimension d. Then
we say that R is regular if m can be generated by exactly d elements.

Remark 2.0.10. We have that a regular Noetherian local ring is an integral
domain. In addition the localization at any prime ideal is also regular. If
K is a prefect field then any finitely generated K-algebra is regular, in this
context we can say R is smooth.

An example of a regular ring is the ring of formal power series. Moreover,
Cohen structure theorem states that any regular ring is isomorphic to the
ring of formal power of series.

Remark 2.0.11. Every regular ring is Cohen-Macaulay. Any quotient of
regular ring with a regular sequence is also Cohen-Macaulay

Serre stated some equivalences for a ring to be normal. In order to do
this, he defined the following conditions.

Definition 2.0.12. Let A be a Noetherian ring. Then we say that A satisfies
e the condition (R;) if Ap is regular for every P € Spec (A) withht P < i;
o the condition (S;) if depth Ap > min (ht P,7) for every P € Spec (A).
We use a particular version of these equivalences.

Theorem 2.0.13. A Noetherian ring is normal if and only if it satifies the
Serre’s condition (Ry) and (Sz).



Note that if the ring is normal with dimension 1, then it is regular. More-
over, if the dimension is 2, then the ring is Cohen-Macaulay. In addition,
Hochster and Huneke | | proved that if R is (S3), then Spec (R)\ V (1)
is connected for every ideal I such that dim (V' (1)) < dim (R) — 2.

The following theorem is a well-known fact about finite ring extensions.

Theorem 2.0.14. If R C S are rings such that S is finitely generated as
R-module, then dim R = dim S.

Krull stated the following theorem. In Chapter 3 we consider a local ring
and we apply it to its maximal ideal.

Theorem 2.0.15 (Krull intersection theorem). Let I C R be an ideal in a
Noetheran ring R. If M 1is a finitely generated R-module, then there is an
element r € I such that (1 —r)(N°IPM) = 0. If R is a domain or a local
ring, and I 1s a proper ideal, then

ﬁﬁ_o.
1

Before giving the next theorem, we need to know what the associated
graded ring of an ideal is.

Definition 2.0.16. Let R be a ring and, I an ideal. The associated graded
ring of I is

gr; (R) = @0 (I"/1™) .
If R is a Noetherian local ring with mazimal ideal m, the fiber cone of I is

the ring

R 1 I?
f](R)—EEBWEBW@"‘
The dimension of Fr is called the analytic spread of I.

Now, we consider when do we have the equality between the dimension
of the fiber cone and the dimension of the associated graded ring.

Theorem 2.0.17. For any ideal I in a local ring (R, m),
dim F; < dim(gr;(R)) = dim R.

Furthermore, if m is the maximal ideal in gr;(R) consisting of all elements
of positive degree of m/I, then

dim(gr;(R)) = ht m.

9



Taking some elements in a ring, The Principal Ideal Theorem gives us
information about the height of a minimal prime containing these elements.

Theorem 2.0.18 (Principal Ideal Theorem). Let R be a Noetherian ring. If
1,...,%. € R and P is minimal among primes of R containing x4, ..., x.,
then codim P < c.

Krull and Akizuki stated that the integral closure of a Noetherian ring is
also Noetherian in the case of finite extensions of one dimensional rings.

Theorem 2.0.19 (Krull-Akizuki Theorem). If R is a one-dimensional Noethe-
rian domain with quotient field K and L is a finite extension field of K, then
any subring S of L that contains R is Noetherian, of dimension at most 1,
and has only finitely many ideals containing a given nonzero ideal of R. In
particular, the integral closure of R in L is Noetherian.

Although Nakayama’s Lemma has many versions, we work with the fol-
lowing one.

Theorem 2.0.20 (Nakayama’s Lemma). Let (R, m, K) be a local ring. Given
a finitely generated R-module M, note that M /mM is a finitely dimensional
vector space over K. Then a given set of elements {x1,...,x,} C M is
a minimal generating set for M if and only if their classes {1, ..., 2.} in
M/mM are a K-vector space basis.

Cohen | | gave an explicit way to describe complete Noetherian local
rings.

Theorem 2.0.21 (Cohen Structure Theorem). Suppose that (R,m, K) is a
complete local Noetherian ring containing any field. Then R contains a field
1somorphic to its residue field and

R = K[xy,...,z,] /1

for some ideal I. The power series variables x; can be taken to be minimal
generators of the mazximal ideal. Furthermore, if R is reqular then

R = K[xy,...,z,)].

The Prime Avoidance Theorem provides us a way to take elements outside
certain prime ideals.

10



Theorem 2.0.22 (Prime Avoidance Theorem). Suppose that Iy,..., I,,J
are ideals of a ring R, and suppose that J C U;I;. If R contains an infinite

field or if at most two of the I; are not prime, then J is contained in one of
the Ij.

The following theorem relates a finitely generated module with its local-
ization at maximal ideal. It is also an example of the Local-Global Principle
in commutative algebra.

Theorem 2.0.23. A finitely generated module in a commutative ring is zero
if and only if it is zero in the localization at every maximal ideal.

Next theorem identifies whether a homomorphism is a monomorphism or
not based on its localization at maximal ideals.

Theorem 2.0.24. If ¢ : M — N is a map of R.modules, then ¢ is a
monomorphism (or ephimorphism or isomorphism) if and only if for every
maximal ideal m of R the localized map @y, : My — Ny s a monomorphism
(or ephimorphism or isomorphism,).

Now we relate the property of splitting and the dual of a module.

Theorem 2.0.25. Consider the R-module homomorphism

c:R—-M
1 —~m.

Then o splits if and only if the natural R-module map

¢ : Hom (M, R) =R
¢ ¢ (m)

18 surjective.

Whenever we have a finite integral extension of domains, there exists a
nonzero homomorphism going backwards. This is stated is the next theorem.

Theorem 2.0.26. If B — R is a finite integral extension of domains, then
there exists ¢ € Homp (R, B) such that ¢ (1g) # 0.

The next theorem states that a union of subgroups in a directed system
is isomorphic to its direct limit, under certain conditions.

11



Theorem 2.0.27. Let G be a group and {G;},.; a collection of subgroups

which form a directed system over a directed set I, that is i < j if and only
if there exists a map

Pij - Gl — Gj.
Then lim G; = U;¢1G;.
—

12



Chapter 3

Valuation domains

Our goal is to understand the Frobenius morphism in valuation domains.
However, before studying these rings, we check on a specific kind of maps
called valuations. As one may think, they are strongly related with valua-
tion domains. This relation is established in Section 2.2. In Section 2.3 we
give some properties of valuation rings. Finally, the last section states their
existence in both Noetherian and non-Noetherian cases.

3.1 Valuations

Valuations are group maps with an additional property. Afterwards, we
mention different examples, and how to create a partition out of this set of
homomorphisms.

Definition 3.1.1. Let K be a field and G be a totally ordered Abelian group.
A wvaluation on K or a K-valuation is a group homomorphism

v: K" — G,
with the property
v(z+y) zmin{v(z),v(y)} Voye K, (3.1)

where K* := K — {0}. Furthermore, let L C K be a field extension. We
say that v is a valuation on K/L, if v(r) =0, Vr € L.

Remark 3.1.2. From the properties of group homomorphisms, we get that

13



1. v(1)=0
2. v(z™Y) = —v(z) VreK*

This definition can be extended to domains, we can consider a domain as
follows.

Remark 3.1.3. Let R be a domain with field of fractions K, G be a totally
ordered group and
v:R\ {0} -G

be a function such that
L. v(zy) =v(z)+v(y) Vr,yeR,
2. v(z+y) >min{v(z),v(y)} Vr,y€ R

Then v can be extended uniquely to a valuation on K as follows:

v K* — G
T
5 — v(x) —u(y).

That’s why we also call v a valuation.

Example 3.1.4. Consider Z, p a prime number, and the function

vy L — 1L

m — vy(m) =,
where r is the biggest power of p that divides m. First note that
vp(m +n) > min {v(m),v(n)}.
Indeed, let v,(m) =1, v,(n) = s and t = min {r, s}. We have that

p'lm and p'|n = p'|(n + m)
=t<max{ue€Z| p“l(m+n)}
=t < wv,(m+n).
Now we prove that v,(mn) = v,(m)+v,(n). Let v,(m) = r and v,(n) = s.
Then p™*|mn, and p"™*~! ¥ mn . Suppose that there exists an element

u > 7+ s such that p*|mn. Since v,(m) = r, we get that p*~"|n which is a
contradiction. We conclude that v, is a Z-valuation.

14



Lemma 3.1.5. Let K be a field and v a K-valuation. Then

for all y € K.

Proof. First we show that v(1) = v(—1).

We extend the Property 3.1 for more than just two elements.

Theorem 3.1.6. Let K be a field, xq,...,x, € K, and v a K — valuation.
Then,

1. v (Z@) > min {v (x1),...,v (z,)}

i=1
2. If v(x;) are all distinct, then v (Z xz> =min{v (x1),...,v (z,)}.
i=1
Proof.

1. We proceed by induction. Note that the case n = 2 is the Property 3.1.
Now, suppose it holds for n—1 elements. Let min {v (z1),...,v (1)} =
v(z;), for some j. Thus,

(E) () )

> min {v(z;), v(z,)}

=min{v (x1),...,v (x,)}.

15



2. We proceed by induction on n. We first assume that n = 2. Since
G is totally ordered, we can assume without loss of generality that
v(xe) < v(xy). If v(z1 + 22) > v(22), then

v (z9) < min{v (z1),v (z2)} = v (x2),

which is a contradiction. Hence v(x; + x2) = v(xs).

Now suppose the claim holds for n — 1 elements, and prove it for n. We
n—1

consider two cases. If v(} 07, ;) > v(wy,), then v(3°7 x;) > v(xy).
We proceed by contradiction. Suppose that v(> | z;) > v(z,). We

have .
v (z,) < min {v (Z JCz) U (l’n)} = v (zn),

which is a contradiction.

On the other hand, if v(z,) > v (Z;:ll x;), then

We proceed by contradiction. Supposed that v (31, z;) > v (Z?;ll xl)

Thus,
v (i%) < min{v (im) ,v(mn)} =0 (i%) ;

which is also a contradiction.

We now define a valuation over a polynomial ring, this map will depend
on the values assigned to the variables.

Definition 3.1.7. Let K be a field, and v a valuation on the field of fractions
of the polynomial ring K (1, ...,x,]. The valuation is said to be monomial
with respect to x1, ..., x, if for any polynomial f = Z?L:o rizd, we get

v(f) =min {v(r;a’) | Vj =0,..,m}.

16



Remark 3.1.8. A monomial valuation is uniquely determined by the values
of x1,...,z,.

Example 3.1.9. Let K be a field and v a K(x, y)-valuation such that v(z) =
V2 and v(y) = 1.

Note that a monomial x%y’, i,j € Z., has value at least n if and only if
z\/(2) + 7 > n. This is because v is a valuation, and so

v(z'y’) = (') +o(y)
= iv(z) + ju(y)
=iV2+ .
Then, ivV2+j >n
Now, we give a name to the image of valuations.

Definition 3.1.10. Let K be a field and v a K-valuation. Then the im-
age Ty = v(K™*) of v is a totally ordered Abelian group. This is called
the value group of v.

Definition 3.1.11. Let K be a field. We say that valuations
v: K*—T, and w: K*—T,
are equivalent if there exists an order preserving group isomorphism
p: 'y — Ty
such that the following diagram commutes
K ——T,

{4

This definition gives the partition we mention at the begining of this
Section.

Example 3.1.12. Let K be a field and v : K* — Z. Let z,y € K*.
Suppose v(z) < v(y). Thus, v(x +y) > v(z) and 2v(x) < 2v(y), and so

17



2v(x +y) > 2v(zr) = min{2v(x),2v(y)}. This shows that 2v is a valuation
and that it preserves order. Consider the function

¢ : Im(v) = Im(20)
v(x) — 2v(x),

which is well-defined. Since

P (0(x) + () = 2(v(x) + v(y))
— 2u(x) + 20(y)

= p(v()) + ¢(v(y)),

© is an homomorphism. Now we prove that it is injective:

p(r)) = e(v(y)) = 2v(x) = 2v(y)
= v(z) = v(y).

Finally, suppose y € Im(2v). Then there exists an element x € K* such
that 2v(x) = y. Therefore there exists v(z) € Im(v) such that ¢(v(z)) =
2v(z) = y. We conclude that ¢ is an isomorphism. Then v is equivalent to
2v.

3.2 Valuation rings

Now we define valuation domains. In addition, we gradually explain the
reason why we studied first valuation maps, this is, we prove the relation
between valuations and valuation domains.

Definition 3.2.1. Let K be a field. A K-valuation domain is an integral
domain V' whose field of fractions is K and satisfies the property that, for
every non-zero element v in K, eitherx €V orx~ ' € V.

If it is clear from the context, we omit K.

Example 3.2.2. Let K = Q and p be a fixed prime. We prove that the set
m
R= {pT—GQITZO,meaHdMn},
n
is a valuation domain.
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Let — € Q be such that (r,s) = 1. Suppose i ¢ R. We show that eR
s s r

0
s s
In the case that p{r and pts, — = bs € R. Now consider the case when p
r r

divides either r or s. Note that if p | r, then there exist n,t € Z such that

r "t
r=p"tand ptt. Thus — = P € R which is a contradiction.
s s
We have that p | s, and thus there exist m, ¢ € Z such that s = p™t and
S m
p1t. Hence, — = Pler
r r

Proposition 3.2.3. Let V' be a valuation domain. The set of ideals in V is
totally ordered by inclusion.

Proof. Let I,J CV be ideals and z € I\ J. For every element y € J \ {0},
f € K. As V is a valuation domain, E e Vor J e V. If z € V., then
) Y

Z Y
T = <£> y € J, which is a contradiction. Hence, Yy € V. This implies that
Yy x
Yy = (g)xel. We conclude that J C 1. [ |
x

Theorem 3.2.4. Let V be a valuation domain. Then V' has a unique maxi-

mal ideal
m,={zeV]|z=0o0rz ' ¢V}.

Proof. First we show that m, is an ideal. It is a subgroup, because 0 € m,,
and z,y € m, implies z — y € m,. Now consider x € m, and z € V. We
prove that 2z € m, by contradiction. If zz ¢ m,, then (z2) ' =z 1271 e V.
This implies that (z7'271) 2 = 27! € V, and thus 2z € m,,.

To show that m, is maximal, suppose that there exists an ideal I such
that m, C I C Rand m, # I[. Let x € I\ m,. Then 27! € V, and so
xza~! € I. Hence I = R. Finally, since the ideals in V are totally ordered,
m, is the unique maximal ideal. [ |

Remark 3.2.5. Given a valuation we get a valuation domain as follows. Let
v: K* — G be a valuation, and define the set

R,={re K" |v(r) >0}U{0}.
Note that

e 0 e Ry,
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o if r;s € R,, then v(r —s) = min{v(r),v(s)} > 0. Thus r — s € R,;
e 1 € R,, because v(1) =0;
e if r,s € R,, then v(rs) =v(r) +v(s) > 0. Thus rs € R,.

We deduce that R, is a subring of K*. Furthermore, it is an integral domain.
Indeed, suppose there exist elements r,v € R, such that rv = 0, and r # 0.
As r € K*, we get that v = 0. Now consider the set

m, ={re K" |v(r)>0}U{0}.
It follows that
1. 0 € my;
2. if r;s € m,, then v(r — s) = min {v(r),v(s)} >0, and so r — s € V;
3. ify € R,, and r € m,, then v(yr) = v(y) + v(r) > 0, and so yr € m,.

Thus m, is an ideal of R,. We prove that it is the unique maximal ideal.
Let I be an ideal such that m, C I C R. Suppose that m, C I. Then there
exists y € I such that v(y) = 0. We get that y=! € R,. Thus 1 € I. We
conclude that m, is maximal. Suppose that @) is a maximal ideal of R, and

consider x € Q. Then,
o ifv(z) =0, we get that 7! € R,. Thus 1 € @, which is a contradiction,
e if v(z) >0, then z € m,. Thus Q C m,, and so Q = m,.

Hence, m, is unique. Finally, we prove that R, is a valuation domain. Let
x € K. If =0, then z € R,. If x is a non-zero element, then v(z) < 0 or
v(z) > 0. When v(z) < 0, we get that x=! € R,. On the other hand, we
have that = € R,, if v(z) > 0.

Remark 3.2.6. If v and w are equivalent valuations, then there exists an
order-preserving isomorphism

p: 'y =T
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such that ¢(v(z)) = w(z), Vo € K*. Thus

r€ R, < v(x) >0
s ¢ H(w(@) >0
< w(z) >0
< € R,

Therefore, R, = R,,.

Definition 3.2.7. The valuation domain R, from Remark 3.2.5 is called the
valuation ring corresponding to the valuation v and its residue field
is denoted by K(v).

Theorem 3.2.8. Let V' be a valuation domain with field of fractions K,
K*
r, = Ve where V* C K* is the multiplicative group of units of V. Let

v: K* =T,

be the natural group homomorphism. Then T, is a totally ordered Abelian
group, v is a K-valuation, and T, is the value group of v.

Proof. As K* is an Abelian group under multiplication, I',, is also Abelian.
Let z,y € K. We define the relation in I,

[z] <[y] S ya ' e V.

We prove that it is well definied. If z ~ y, where ~ is the relation in the
quotient, then xy~1 yz=! € V*. We get that [z] = [y].

Now we show that I', is totally ordered. If |a],[b] € I',, then a,b € K.
We get that ab™ € V or ba™' € V. Thus [a] < [b] or [b] < [a]. We conclude
that I', is totally ordered.

Now we prove that v is a K-valuation. We know that v(zy) = v(x) +
v(y), because v is a group homomorphism. We check that v(x + y) >
min {v(x),v(y)}. Let x,y € K*. Then, xy~' € V or yz=' € V. Suppose
without loss of generality that zy™' € V, then (z +y)y ' =2y ' +1 € V.
Thus v(z +y) > v(y) > min {v(x),v(y)}.

As v is surjective, we conclude that I',, is the value group of v.
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Definition 3.2.9. The valuation map obtained from Theorem 3.2.8 are called
assoctated valuation to the valuation domain V.

Remark 3.2.10. In Definition 3.2.9, the valuation map is unique up to
isomorphism.

Proposition 3.2.11. If V is a K-valuation domain and v is the valuation
obtained from V', then the valuation ring of v is V.

Proof. We show that V = R,. Let x € V. Then x € K, and so v(z) > 0 or
v(xz) < 0. In the first case, x € R,. Note that if v(z) < 0, then v(z) < v(1).
Thus =1 € V, because of the order we defined in I',,, which is a contradiction.
We conclude that x € R,,.

Now, let € R,. Then z € K and v(z) > 0. As V is a valuation domain,
thusz € Vorz™' e V. Ifx ¢ V, then z7! € V. Since v(z™') < 0, we obtain
v(z7') < v(1). Therefore z € V, which is a contradiction. We conclude that
zreV

|

Proposition 3.2.12. Let v be a K-valuation and R, the corresponding val-
uation domain. Then the associated valuation to R, is equivalent to v.

Proof. Let w be the associated valuation to R,. Consider the map

*

(Y

[r] — v (r).

— T,

Note that it is well defined. If r, s € K* are elements such that r ~ s, then
rs—' € R:. Therefore,

0=v(rs™")=v(r)—uv(s).

This is v (1) = v (s). Moreover, ¢ is a group homomorphism.We have that

It is also order preserving. Let [r], [s] € % be such that [r] < [s]. Suppose

v(s) < v(r). Then v(r) —v(s) > 0, this implies that v (rs™') = 0. Thus
rs~' € R, and so [s] < [r], which is a contradiction. Therefore v (s) > v (r).
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Now, if g € I',. Then there exists € K*, such that x = v (r). Therefore
o([r]) = v(r) = z. This is, ¢ is surjective. In addition, if r,s € K*
are elements such that v (r) = v (s), then v (rs™') = 0. This implies that
rs~! € R*. Thus, r ~ s. We conclude that ¢ is inyective, and so an order
preserving group isomorpshim. Finally, note that

V= (pouw.

We conclude that v and w are equivalent.
|

Corollary 3.2.13. There is a bijection between K-valuation domains and
equivalence classes of K-valuations.

Proof. Let D denote the set of valuation domains and M the set of equiva-
lence classes of K-valuations. Define

p: M —D
vi— R,

Note that ¢ is well-defined by Theorem 3.2.11. Consider the map

0:D— M
Vi,

where v is the associated valuation to V. By Theorem 3.2.11, p o 0 = Idp.
On the other hand by Theorem 3.2.12, § o o = Idy,. |

Now that we have the relation we were seeking, we use both indistinctively
throughtout the rest of this work. In addition, we refer as R, and I', the
valuation domain of the valuation v and its valuation group, respectively.

Proposition 3.2.14. Let v be a valuation over a field K. Then valuation of
a unit in R, 1s 0.

Proof. Let a be a unit in R,. Then v(a) > 0. Since a™! € R,, v(a™!) =
—v (a) > 0, we conclude that v (a) = 0. [

Proposition 3.2.15. Let v be a valuation over a field K. Then v (Q) = 0.
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1
Proof. First we prove that if n € Z, then v(n) = 0. We have that for —,

n
1 1
vl—|=v]| —
n 1441
—_——
n times
Y L
—\1 1
>0.
p 1 1 .
Hence, v(n) = 0. Now, v (=) = v(p)+v|—-] = v|—|. Finally,
q q q
1
v (—) = 0, because q € K. [ |
q

We introduce a kind of groups we often use.

Definition 3.2.16. Let I" be a totally ordered Abelian group. We say that I’
is Archimedean, if for any elements g,h € I' such that g > 0, there exists
a positive integer n such that ng > h.

Theorem 3.2.17 (Holder). Let I' be a totally ordered Abelian group that is
Archimedean. Then T is isomorphic to a subgroup of R.

Proof. Let a € T be fixed positive. Therefore for any b € I' be positive
consider the set

Sy ={reQ| ra<b}
Note that S, is not empty because I' is Archimedean. In fact, there exists

1
z € N such that zb > a, and consequently — € S,. Furthermore, as I' is

z
Archimedean, there exists n € N such that b < na. Let r € S,. If r < n,
then ra < na. Therefore, b < ra < na < b, which is a contradiction. We get
that Sy is bounded by n. Thus S, has a supremum. Define ¢ : I' = R by

e ¢(0) =0,
e p(b) =sup Sy, if b >0,
o o(—b) = —p(b), it b < 0.
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We show that ¢ is a homomorphism. Let b, ¢ € ' be positive elements and
A={m+n| me Sy, neS.}.

As A C Spie), then sup A = sup S, + sup Se < sup S(p), and so, ¢(b) +
o(c) < p(b+ c¢). Now we proceed by contradiction, suppose that ¢(b) +
o(c) < p(b+ c¢). Thus there exists r,s € Q such that ¢(b) < r, p(c) <
s, and r +s < @(b+c¢). Then (r+ s)a < b+ c < ra+ sa, which is a
contradiction. Thus, ¢(b) + ¢(c) = ¢(b+ ¢). If b and ¢ are both negative,
then p(—b) + p(—c) = ¢(—(b+ ¢)). Thus,

@(b) + ¢(c) = —(p(=b) + ¢(—0))
= —p(=(b+¢))
= @b+ c).

Let b,c > 0, p = sup Sy, ¢ = supS,, and r = sup .Sy_.. Since pa < b and
qa < ¢, we get that (p —q)a < b—c. Thus, p—q <r. Since p—q € Sp_,
p—q =r, we have, p(b) — p(c) = p(b— ¢). Suppose b is a positive element
and c is a negative element. Then —c > 0. Thus,

Now we show that ¢ preserves inequalities. First, suppose b < 0. Then, there
1 1

exists m € N such that a < mb. Thus — € 5,. We get that 0 < — < ¢(b).
m m

Now if ¢ < b, then S, # Sp, sosup S, < sup Sp. We conclude that ¢(c) < ¢(b).
Finally, we prove that ¢ is injective. Let x,y € I' be such that x # y. Then
x <yory < z. Without loss of generality suppose x < y. Thus, ¢(x) < ¢(y)
This means that ¢(z) # ¢(y). Therefore, ¢ is injective. As ¢ is surjective
over its image, it is isomorphic to a subgroup of R. [

3.3 Properties of valuation domains.

Theorem 3.3.1. Every valuation domain is integrally closed.
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Proof. Let x € Frac(V') be such that it satifies a polynomial with coefficients
inV, ie.,
2"+t 4, =0,

Suppose that x ¢ V. Then = € V. Thus we have that
x " (J:” +rz" 4+ Tn) =0=14+rz '+, . +rz"=0

=1lez 'V
=zeV,

which is a contradiction. We conclude that z € V| and so, V' = Frac(V)
[

Remark 3.3.2. Let V be a K-valuation ring and A be a ring such that
VCACK. Ifz €K, thena eV CAora! €V C A Thus A is also a
K-valuation ring.

In addition, if we take an element y € my such that y ¢ my,, then y=! €
V C A, which is a contradiction. Therefore, my C my, and my € Spec(V).
Moreover, consider the localization Vy,, C A. Let x € A\ V. Then 27! € V
and 27! ¢ myu, so it is a unit in V. We conclude that V,,, = A.

Proposition 3.3.3. Let V be a K-valuation ring and let
C={Aring |VCACK}.
Then the map

6 : Spec (V) — C
P—Vp

is a order-reversing bijection. Hence, the set of subrings such that V C A C
K is totally ordered by inclusion.

Proof. Consider the map

¢ : C' — Spec (V)
A&—)mA.

We show that 6 0 ¢ = Idc and v 0 0 = Idgpec(v)-
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Let P € Spec(V), and A = Vp. By Remark 3.3.2, my = P. We have

that

(Yo 8) (P) =1 (Vp)

and

By Remark 3.3.2; the bijection is order-reversing. The last part follows from
Proposition 3.2.3. [ ]

Proposition 3.3.4. Let V be a K-valuation domain.

1.

2.

FEvery finitely generated ideal of V' is principal.
If for some x,y € V, (x,y)V # yV, then¥Vr € V, (x —ry)V = (z,y)V.

Proof.

1.

Let I be an ideal of V and G = {1, %, ...,x,} be a generating set of
I. We proceed by induction on n. In the case n = 1, we have that
I = (z1). Now, take n = 2, and consider G = {z,y}. Since z,y € K,
ry teVoryzt €V. Thus (zy V)y=x € yV or (yr~ )z € 2V, and
therefore I is principal. We get that |G| = 1.

Now suppose this holds for n — 1. Let H = {xy,x2,...x,_1}. Then
there exists m € {1,2,...,n — 1} such that (H) = z,,V. Then (G) =
(HY + 2,V = 2,V + 2,V. Applying the case n = 2, we get that
(G) = x,V for some k € {n,m}.

Since (x,y)V # yV, we have that = ¢ yV and x # 0. If y = 0, then
(x—ry)V =2V = (z,y)V, ¥r € V. Now, consider y # 0. Since (z,y)V
is finitely generated, y € xV. Therefore, (x — ry)V C zV. Moreover,
there exists s € V such that y = sz. Thus x —ry = x—rsz = (1—rs)z,
and (z —ry)V = (1 —rs)zV. Note that s is not a unit in V'; otherwise
x = s 'y, which is a contradiction. Thus, 1 — rs in a unit in V, this
Vr € V. Hence v = (1 —rs)(1 —rs) " 'z.
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Lemma 3.3.5. Let R be a ring, I be an ideal of R and V1, ..., V, be valuation
domains that are R-algebras. Assume that for each j = 1,...,n IV; is a
principal ideal.

1. There exist m € Nyg and x € I™ such that Vi xV; = I™V;.

2. Fori=1,..,n let m; be the maximal ideal V;. Assume that R contains
units uy, ..., u,_1 with the property that modulo each m; N R all u; are
disticnt. Then there exists an element x € I such that Vi = 1,....n,
xV; =1V;.

Proof.

1. We proceed by induction. We first consider the case n = 1. Take
m = 1 and apply the Proposition 3.3.4. Now, suppose our claim holds
for n — 1. By the case n = 1, we get that for all i € 1, ..., n there exist
m; € N5 and an element z; € I"™ such that Vi # j x,;V; = "™V},

Py
J r
x, "

_ n _ m _ n 71 T
Define m = [[;_, my, r = [, and @ = 370 iz .2, where z;

means the element a:;j is removed. Note that x € I"™™ Y Since [™™1)

is an ideal of R, we get that I™™ DV, is an ideal for all i. Thus by
Proposition 3.3.4, zV; = I™"=DV; Vi,

2. We proceed by contradiction. Consider the case n = 1. There are no
such units, so we can apply the Proposition 3.3.4. Now, suppose our
claim holds for n — 1, we show that it holds for n. We may assume
that there exist x,y € I such that forall 1 <7 <nand 1 < j < n,
xV; = IV; and yV; = IV;. Note that if 2V,, = I'V,,, we already get what
we want, the same with yV; = IVj. Thus, suppose that zV, # IV,
and yVj # IVy. We get that for any unit « in V', by Proposition 3.3.4,
(x —uy)V,, =1V, and (z —uy) V; = IV.

Now, consider i = 2,...,n—1. Note that if u is a unit and (z — uy) V; #
1V;, then x — uy € m;I. In addition, consider uy, u;, with k # [, such
that x —ugy, r—wy € m;I. Then (x — upy) —(r — wy) = (up —w) y €

Suppose that x — ugy, © — wy € m;I, for all k # [. Then uy — u; is a
unit, and so, y € m;I. On the other hand, yV; = IV;, so y = qy for
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some g € m;. We get that y(1 —¢) = 0, with y # 0 and 1 — ¢ # 0.
Hence we have a contradiction, because V; is a domain. Thus for each
1, there exists at most one of the units, u;, such that r — upy € m;I.
Recall that we have n — 1 units and we are considering n — 2 valuation
domains V;. Then, there is a u; such that (r —wugy)V; = IV;. We
conclude that u; works for ¢ =1,...,n.

Theorem 3.3.6. Let (R, m) be a local domain, K its field of fractions, and
R # K. Then, the following are equivalent:

1. R is a Noetherian valuation domain,
2. R is a principal ideal domain,
3. R 1s Noetherian and the mazximal ideal m 1s principal,
4. R is Noetherian and there is no ring properly between R and K,
5. R is Noetherian, one-dimensional, and integrally closed,
. Nym™ =0 and m is principal,

6
7. R is a valuation domain with value group isomophic to a subgroup of
Z.

Proof.

1 =2: Since R is Noetherian, its ideals are finitely generated. Then, by
Lemma 3.3.5, the ideals in R are principal.

2 = T: First we prove that R is a valuation domain. Let = € R be such that
m = (z). Note that

Frac(R):RI:{;—nMGR,nEN}.

Let f € Frac(R). Then, f = £ for some a € R, n € N. Consider

t
re

a = ra' for some r € R, t € N. We have that f = — = ra'™™". We
T
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7 =2:

7 =1:

have two cases t > n or n > t. In the first case, f € R; on the second,
f~1 € R. We get that R is a valuation domain. Now define the map

o Frac (R)" N

R*
a
|:_n] = n,
x
Note that ¢ is well define since v (r) = 0 for every r € R*. In addition,
@ is a group homomorphism. Indeed,

(1] ) = (55

() - ([2))

a Frac (R)”
Now we prove that is ¢ is inyective. Let [—] € % be such that
rn *

%) ([i} = 0). Note that we can take a € R\ m. Then n = 0, this is

xn

a
—] =a € R*. We conclude that the value group of R is isomorphic
l.n

to a subgroup of Z.

Consider the valuation v : K* — K*/R* =2 T' C Z. Then there exists
x € K such that v(z) = 1. Thus, z is not a unit in R.

Let I be an arbitrary non-zero ideal in R. Since R is the set of all
elements with positive valuation and I # (), there exists y € I such
that v(y) = min{v(i)|i € I}. Set n = v(y). We have that v (yz™™) =
n —n = 0. Hence, yzr™™ € R*. In addition, v (zz™") > 0 Vz € I, and
so, zx~! € R. Note that z = (za™™) 2" € 2"R, Vz € I. Since y = ra"
for some r € R, r = yz™" in K, we get that v(r) = 0. We get that
r € R* and 2" € yR C I. Hence, [ = 2" R = yR. We conclude that R
is a principal ideal domain.

From the previuos implication, we get that R is a principal ideal valu-
ation domain. We conclude R is Noetherian.

We have shown that 1, 2 and 7 are equivalent.
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1 =4:

4 =3:

3 = 2:

2 =3:

Suppose there exists a ring A such that R C A & K. We show that
R = A. Note that by Remark 3.3.2, A is a valuation domain too. Now
let a € A. Thena € K. Thusa € Ror a™! € R. If a € R, then we
are done. Suppose that a™' € R and a ¢ R. Then a~! € A, and so,
a is a unit in A. We get that a ¢ ms and @ € m. Since m = my N R,
a~! € m, which is a contradiction. We conclude a € R.

Note that R is already Notherian. Now we show that dim R = 1. Let
x € m. Then we get that R C R, = K, where R, denotes the localiza-
tion of R in z.

Now consider a non-zero prime ideal () of R. Then 0 C @ C R. As
R, = K, we have that QR, = K. This because for each element y € @,
its inverse is in R,, and so, QR, = (1) = K.

By Theorem 2.0.13, it suffices to prove that R is normal. By contra-
diction. Consider f € K\ R. Then R C R|[f] = K. Thus, by Theorem
2.0.14 dim R = dim R [f] = 0, but this is a contradiction. We get that
f € R. Hence m is principal, and we conclude that dim R = 1.

Since R is Noetherian, we have that every ideal is finitely generated.
Now let m = (z), with x € R and let I be any ideal in R. Thus
I = {ay,...a,). Since I C m, we get that

kl‘ ki
j=1 j=1
where p; = min {n;, }. Hence I = (27) with j = min {p;}.

Since R is a principal ideal domain, we have that m is principal.

Now, we have that 1, 3, 4 and 2 are equivalent. Therefore, They are also
equivalent to 7.

1 =5:

5 =6:

Since R is Noetherian, it is integrally closed, by Lemma 3.3.1. Hence,
since R is a principal domain, it is one dimensional.

Applying Krull’s Intersection Theorem, we get that N,m"™ = 0. We
prove m is principal. Note that R is reduced, because it is a domain.
Thus it is normal and, by Theorem 2.0.13, it satisfies the Serre’s codi-
tion (R;). Now, we know that Ry, is regular, and so, mR,, is generated
by one element. We conclude that m is generated by one element.
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6 =2: Let z € R besuch that m = (x), I C R anon-zero ideal, and y € I\{0}.
As I C m, there exist 1 € R such that y = riz. If r; € m, we get that
r1 =197, T2 € R, and so, y = ryx?. Inductively there exists n € Z such
that r, ¢ m and y = r,2"; otherwise, y € Nm” but this is not possible.

Thus, r, is a unit, and so, (y) = («™). Since this holds for every
nonzero element in I, we can consider the least such integer k, such
that (z) = <a:k> for each element z € I. We conclude that I = <:13k>

Finally, we get that 1, 5, 6 and 2 are equivalent. We conclude the
equivalence among the statements. [ |

Proposition 3.3.7. A K-valuation domain V is Noetherian if and only if
I'=7Z orI"={0}.

Proof. Let I' be the value group obtained from V. By Theorem 3.3.6, we
know that V' # K is Noetherian if and only if I' & Z.
Now if V = K, then [‘f— = K2 = 0,50 ' = {0}. On the other hand, if

K*

I' = {0}, then &= = V*. Thus Vo € K*, € V*. We get that V = K.
Therefore, V' = K if and only if I' = {0}. |

Definition 3.3.8. A wvaluation and its corresponding valuation domain are
said to be (generalized) discrete if its value group is isomorphic to Z™
with the lexicographic order.

Recall that our goal is to prove the main theorem over a discrete valuation
domains under certain conditions.

Example 3.3.9. Some examples of discrete valuation domains are
o K[x] with K a field,
e O, with p prime.
Now we relate Noetherian and discrete valuation domains.

Theorem 3.3.10. Let V' be a valuation domain that is not a field. Then V'
1s Noetherian if and only if it is a discrete valuation domain of dimension
one.
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Proof. First, suppose V is Noetherian. Then, by Theorem 3.3.6, V has
dimension one and its valuation group is isomorphic to a subgroup of Z.

Now, suppose V is a discrete valuation domain of dimension one. We
show that V is a principal ideal domain. Let I be an ideal in V. There exists
an element y € I such that

v(y) =min{v (@) | i€ I},

where v is the associated valuation to V. Note that (y) C I. Now, let z € I.
We have that v(z) > v(y). Then v(zy™') > 0, and so, zy~! € V. As
z=(zy "y € (y), we conclude that I C (y). |

Now we want to understand valuation domians over field extensions, for
that we have the following lemma.

Lemma 3.3.11. The value group of a one dimensional valuation ring V is
isomorphic to a subgroup of R.

Proof. Let I' be the value group we obtained from V', we need to prove it is
Archimedean.

We proceed by contradiction. Let g,h € I' such that g > 0. Consider
x,y € V be such that v(z) = g and v(y) = h. Suppose that ng < h, Vn € N.
Thus (y) is a non-zero ideal. Note that if z € (y™), for some m € N, then
x = ry™ with r € V. Thus g = v(z) = v(y) = v(y™) = mh, which is a
contradiction. Hence, = ¢ 1/(y).

Since 1/(y) = my, we deduce that = is a unit. Hence v(z) = 0, which is
a contradiction. We conclude that there exists m € N such that mg > h. By
Theorem 3.2.17, I' is isomorphic to a subgroup of R. [ ]

Proposition 3.3.12. Let V' be a K-valuation domain and F be a subfield of
K. Then

1. the intersection V N F' is a F-valuation domain;
2. if V' is Noetherian, then so is V N F;
3. if F C K is an algebraic extension, then I'v @, Q = I'var @, Q.

Proof.

33



1. Let z € F. Thenx € K. Thus,x € Vora ' € V. If x € V, we are
done. Suppose x ¢ V. Then 2= € V. Since F is a field, 27! € F, and
' € VN F. We conclude VN F is an F-valuation domain. Note that
the corresponding valuation is the restriction of the valuation v in F.

2. First we prove I'yqp C I'y. Consider g € I'ynp. Then there exists
x € VN F such that v|p(x) = g. Since x € V, we have that v(z) =
g € I'y. Now, by Theorem 3.3.6, I'y, is isomorphic to a subgroup of Z.
Since I'yp is a subgroup of I'y,, we deduce that it is isomorphic to a
subgroup of Z. Hence V N F' is Noetherian.

3. Let ' C K be an algebraic extension and x € K. Then there exists a
polynomial such that

"+ a4+ a, =0
with a; € F. Note that
v(a;z" ") =v(a)+v (") =(n—i)v(z),

because v (a,) = 1. Therefore, v (a;2"") # v (a;z"7) for every i,j €
{1,...,n}, with ¢ # j. Hence we have that

o —

a;x" = =" — e — gt — - —ay,
. —_— .
=v (az"") =v (—:B” — @ — e — an> > min {v (a;z"77) |j # i}
v (ajx"_j) for some j

= (i — j)v(z) =v(a;) —v(aj) € Tynp
1

i—j

We conclude that I'y ®7 Q = I'yar ®7 Q

Theorem 3.3.13. Let V' be a valuation ring with maximal ideal m and W
be the m-adic completion of V.. Then W is a valuation ring.
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Proof. First we need to prove W is a domain. Consider {a,}, 50, {bn},>0
two Cauchy sequences of elements in V' whose product converges to zero in
W. Then for N > 0, there exists M € Z such that Yn > M, a,b, € m?V.

We have
l
a'nbn - E Ci,
i=0

with ¢; € m?Y. Let I?YN = (¢;|i=1,...t) C m. Then a,b, € I. By
Proposition 3.3.4, there exists an element ¢, such that IV = (cn>2N. Note
that for each n, we have that a,, € <cn)N or b, € <cn>N.

As we are working with Cauchy sequences, there exists an integer T
such that a, — a,.1 € m? and b, — b1 € m?. Consider an integer ng >
max {M, T}, and without loss of generality suppose that a,o € C) C m".
Then for every n > ng, a, € m?. Then, the sequence {an}neN is zero. Hence
W is a domain.

Now, let = € Frac (W). Then

— {a”}nEN
{bn}nen

where {a,}, € N and {b,}, € N are two Cauchy sequences in V.
As the value group is totally order we have that v (a,) < v (b,) or v (b,) <
v (ay,) for each n € N. [

i

From this point, we give some interesting properties of valuations. For
further material refer to Nicolas Bourbaki’s book in Commutative Algebra

[ J

Definition 3.3.14. Let v be a K-valuation, a € K, and g € T',. Define the
set
By(a)={be K |v(a—b) >g}.

This set is the base of the topology defined by v.

Definition 3.3.15. Consider an extension of fields K C L. A L-valuation
w is called an extension of a K-valuation v if w|x = v. Likewise, we say
that R, dominates R,, if R, = R, N K with m,, N R, = m,,.

Remark 3.3.16. Note that we have the following maps
R, R,

m, my,
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I, =T,

Definition 3.3.17. The degree of the field extension in Remark 3.3.16 is
called residue degree of w over v, and it is denoted f (w/v).

The ramification index of w over v, denoted e (w/v), is the index of
r, o, .

Remark 3.3.18. If K < L is a finite extension, then f (w/v) and e (w/v)
are both finite.

Definition 3.3.19. Let V and W be two K-valuations. We say V and
W are independent, if K is the ring generated by V and W; otherwise,
they are dependent. Similarly, two valuations v and w are independent
(dependent) if their rings are independent (dependent).

Remark 3.3.20. Dependence is na equivalence relation.

Proposition 3.3.21. Let v,w be K-valuations. Then v and w are dependent
if and only if they define the same topology.

Proof. First suppose they define the same topology. Then consider the pre-
serving order map as the identity.

For the converse, suppose that v and w are dependent. Therefore, there
exists a order preserving group homomorphism ¢. Let v; € [, 72 € [, and
a € K. Then we have the sets B,, (a) and B,, (a) as in Definition 3.3.14.

Take b € B, (a). Then v (a —b) > ;. We have that

w(a—>b)>¢(v(a—"b)>¢(n).
We conclude they define the same topology. [ ]

Lemma 3.3.22. Letwvq,...,v, withn > 2 be pairwise dependent K -valuations.
Then the corresponding rings Vi, ..., V, generate a subring of K distinct from
K.

Proof. We proceed by induction. The case n = 2, follows from the definition.
Suppose our claim holds for n — 1 valuations. Then, there exists a subring
A G K suchthat V; & Afori=1,...,n—1. On the other hand, there exists
a subring B & K such that V,,_; € B and V,, € B. By Proposition 3.3.3, A
and B are comparable with the inclusion. The greater is the subring of K
we are looking for. |
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3.4 Existence of valuation rings

Lemma 3.4.1. Let R be a domain with field of fractions K. Let m be a prime
ideal of R. Then for all x € K*, either mR [z] # R[z] ormR[z7'] # R[z7'].

Proof. Localizing at m we assume that mR[z~!] = R[z™!], we show that
mR [x] # R[z]. We have that

l=ay+az '+ +az " =" =apr" +a2" '+ +a,
=(1—ap)z" = a2 '+ - +a,
=0=—(1—ap)z" +az" '+ +a,,

for some a; € m. Since ag € m, (1 —ag) is a unit in R, we get that x is
integral over R. Hence R[z| is an integral extension of R. By the Lying
Over Theorem, there exists a prime ideal n C R [x], such that n N R = m.
We conclude that mR [z] # R [z]. |

Theorem 3.4.2. Let R be an integral domain, and let m be a non-zero prime
tdeal in R. Then, there exists a valuation domain V between R and the field
of fractions of R, such that my N R = m, where my is the mazimal ideal of
V.

Proof. Localizing at m we may assume that R is local, and K is its quotient
field. Consider the set

IT = {(A,my) local rings|R C A,mA Cmy, and A C K}.
Note that (R, m) € II. Now, we consider the following partial order:
(A,my) < (B,mg) < AC Band myB C mp.

Take (Ag,ma,) < (A;,myu,) < ... an ascending chain and note that the
element U; A; is an upper bound. Hence, by Zorn’s Lemma, II has a maximal
element (V,my), where my N R = m.

We show that V' is a valuation domain. Let x be an element in K, and
suppose 7! ¢ V. By Lemma 3.4.1, my'V [x] # V [z]. Take a maximal ideal
n of V' [z], such that myV [z] C n.

Now consider the localization in n, say S and its maximal ideal nS. Note
that (S,nS) € II. Since V C S and myS C nS, we get that (V,my) <
(S,nS). As V is a maximal element, S = V. Hence x € V. We conclude
that V is a valuation domain and my N R = m. |
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Theorem 3.4.3. Let R be a Noetherian integral domain and let P be a non-
zero prime ideal in R. Then there exists a Noetherian valuation domain V'
between R and the field of fractions of R such that my N R = P.

Proof. We assume P is the unique maximal ideal of R by localization at P.
Take

G =grp(R) =& (P"/P"*") = R/P [P/P?].

n>0

Suppose P = (fi,...,fn). Since R/P is a field and P/P? is finitely
generated, we get that

GgR/‘P [fla"wfk} .
In addition, we have the following homomorphism
p:R/P[r1,....a] = R/P[fi,... fi]
T f;

Suppose that P/P? has only nilpotent elements. Then there exist ele-
ments a1, ...a such that f; =0, Vi = 1,..., k. Thus we have the homo-
morphism

o B P et R
(215 )

T = fi.
Thus by Theorem 2.0.17, dim R = 0. Thus, not every element in P/P? is
nilpotent, so take x € P/P? such that Z € G is not nilpotent.

Let S = R[P/x] = [%, ey f—} . Note that S is finitely generated as R-

n
a
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algebra and so, S is Noetherian. Suppose £S5 = S and write

n
a; .
1=x§ — for some a; € P,i=1,...,n
—

n m"’iw
_ ? : n—i n
= E o with 2" 'a; € P

1=0

:—Wherea— E ",

a

l.n—l

Then 2" ! = a € P", which is a contradiction. Hence 25 = PS is a
proper ideal. By Principal Ideal Theorem, we have that dimSg = 1, for
every () prime ideal of S.

Now, if we consider the integral closure Ty of Sg, by Lying Over Theo-
rem, there exists a maximal ideal n in 7" containing Q7. By Krull-Akizuki
Theorem, Ty is one dimensional, Noetherian and integrally closed. By The-
orem 3.3.6, T" is a Noetherian valuation domain with maximal ideal nT". As
Q C QT CnCnl, then Q C nT,. Inaddition, x5 C @Q, thus P C PS C nT,
and so, P C nT'N R. Finally, take m € nN R such that m ¢ P. Then m
is unit in R, and so, m is unit in 7}, which is a contradiction. We conclude
that nT, N R = P. |
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Chapter 4

Methods in prime characteristic

In this chapter, we study the Frobenius map and how it describes singu-
larities. Specifically, we study F-finiteness, F-splitting, F-regularity, and
F-purity. In addition, we give some of their properties, relations among
them, and their effects over domains.

Setting 4.0.1. The rings used in this chapter be commutative, with unit
and of prime characteristic p.

4.1 Introduction to Frobenius morphism

Definition 4.1.1. Let R be a ring. The Frobenius morphism is the ring
homomorphism

F:R— R

r— 7P
The iterated Frobenius is the map F¢ = Fo---oF e >0 times. This is,

F*:R— R

(&
r .

Proposition 4.1.2. Let R be a ring. The Frobenius morphism s injective
if and only if R is reduced.

Proof. Let R be reduced. Then F' has to be injective, because P = 0 if and
only if z = 0.
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Now, suppose that the Frobenius map is injective. We proceed by con-
tradiction. Let x € R— {0} be a nilpotent element. Then there exists o € N
such that z¢ = 0. In addition, we can find an element ¢ € N such that
o < pt.

Since F is injective, we get that F® is also injective. Thus, F¢(z) = 2?° =
0, which is a contradiction. [ |

Definition 4.1.3. Let R be a ring and I an ideal. We denote IP°l to the
tdeal generated by the p®-powers of all elements of 1.

Setting 4.1.4. Through the rest of this chapter we only consider integral
domains.

Proposition 4.1.5. The Frobenius homomorphism induces the identity map
on Spec (R).

Proof. Consider the following homomorphism
¢ : Spec(R) — Spec(R)
P F7Y(P).

Let @ € Spec(R). Since @ is an ideal, we deduce that F(Q) C Q. Hence
Q C F(F(Q) € F(Q)

On the other hand, if x € F~1(Q), then 27 € Q. Note that v/Q = Q, and
so, x € ). This is, ¢(Q) = Q. [ |

Definition 4.1.6. We define the following algebras.

o RP : the subring of p powers of R. Note that Frobenius factors through
the inclusion, this is
RP — R.

e F.R : the ring R using as second operation the restriction of scalars.

The elements of this ring are denoted as F,r. This is equivalent to the
algebraic structure given by Frobenius, this is

REFR

e RYP : the subring of the algebraic closure of Frac(R) whose elements
are solutions of the equations x? —r = 0 for each r € R. Note that each
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of these equations have only one solution, because R is of characteristic
p > 0. The elements of this ring are denoted by r'/P. We have the

embedding
R — R'P.

Thus we have the following commutative diagram We have the following com-
mutative diagram of R-algebras

RP—— R

]

R—— F.R
R — RYP,

Remark 4.1.7. Note that F, R =2 RY?, using the R-module homomorphism
that sends F.,r — r/?, Furthermore, we have that

F.RR/P~pRr=~p
as rings.

In this manuscript we focus on the algebra F?R. By Remark 4.1.7, every
result about FYR has an equivalent version with the other two algebras.

Definition 4.1.8. Let R be a ring and M be an R-module. Define FSM, for
e > 0, as the F¢R-module with operation

(Fir) (Fim) = FY (rm),
withr € R, m € M.
Remark 4.1.9. We have that /F¢R = F¢IP) and F, (R/mP) = F,R/F.m/.
Example 4.1.10. Let R =F, [z1, ..., z,]. Note that
F.R=T, |Fa, ... Fxg} ,
because a = a” Va € F,. Now, using the division algorithm, 5, = ¢;p + o

with 0 < a; < p — 1. Thus, for every monomial in F, R, we have that

U o) - Py =ags,.. 5,y Fua{ " - Faarten

.....



which belongs to R [F.x(" - - - F,z%"]. Note that this monomial belongs uniquely
to R [F.xl* - - Fxd~] because of the choose of ;. We conclude F.R is a free
R-mod with basis

{Fa?, ... Faaom|0 < a; <p—1}.
The following theorem shows that F, R commutes with localization.

Proposition 4.1.11. Let R be a ring and W C R be any multiplicative
system. Then W 'F,R= F, (W~'R).

Proof. Consider the map

¢: WT'F.R— F, (W 'R)

1
“Fr— F (i) .
g gr
First we show that ¢ is well-defined. Take two related elements, say

1 1 1 1
—F.r~ EF*S. Note that — and 7 may be thought as scalars for F,R. Then
g

g
r s

we have that F*—p ~ F*ﬁ' Note that ¢ is a homomorphism.Indeed
g

1 1 1
EF*T’ + EF*S = h_gF* (hPr + ¢Ps) .

Thus,
r 5 r S
In addition, if a € R, then

1 1
« (—F*r) = _F.aPr.
g g

Therefore »
L or L
gP gP

1
Now, let —F.r € ker . Then, there exists s € W such that sr = 0. Since
g

1 r
we are in a domain, r = 0, and so, —F,r = 0. Furthermore, for any F,—, we
g
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1
have the element — F,rgP~!, such that

1
¥ (_F*rgp_l) = F*i
g g

Hence ¢ is an isomorphism.

Theorem 4.1.12. Let (R,m) be a Noetherian local ring, and let R be the

completion at m. Then there is a identification of the maps R — Ej% and
R — F.R.

Proof. We have that F, R = lim,_ F,R/m" (FLR). Thus, the morphism
R/m"™ — F.R/m" (F.R)

induces the morphism o
R — F.R.
On the other hand, we know that Vn € N

F.R/m"F.R~ F.R/F, <(m”)[p]) ~ F, (R/ (m")[p]> .

In addition, {(m”)[p ]} and {m"} _are confinal. Indeed, (m™)¥ C m"

for every n € N. Now, et x1,...,xq be the generators of m. Note that
mP? = (20 25? | ay + -+ + ag = pd), so there exists i such that o; > p in
each generator of m*?. This is, m** C mPP, and so, mP® C (m[)" for every
n € N.

Hence,

lim F.R/m" F.R = lim F,R/F. ((w")") = 1im F. R/ (m")")
— — —

Thus we have the map R N
R — F,R.
[ |

The module F¢R gives us information about both the domain and its
residue field. The following theorems are examples of this fact.
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Proposition 4.1.13. Let (R, m, K) be an local domain. If F.R is a finitely
generated module, then it is minimally generated by

(K : K*]dimg (R/m))

elements.
Proof. By Theorem 2.0.20, the minimal number of generators is the dimen-
sion of F,R/mF,R. Since mF,R = F,mlPl, we have that F,R/mF,R =
F.R/FmlPl = F, (R/ml).

Hence dimp, g F, (R/m[p]) = dimg (R/m[”]). Since we have the field ex-
tension K C F,K, we conclude that

dimg (F.R) = [K : K?]dimj (R/m")).
|

Theorem 4.1.14 (Kunz’s Theorem). If R is a Noetherian domain, then R
1s reqular if and only if FLR is a flat R-module.

Proof. In this work we only show that if R is regular then F,R is flat as
R-module. For the complete proof, we refer to the paper ”Characterizations
of regular local rings of characteristic p” by Ernst Kunz| |. Note that
R is regular if and only if R, Vm € Max(R) and F,R is flat over R if and
only if (FyR),, = F\R,, is flat over R,,. Hence, we focus on the local case.

First we prove that R regular implies that F,R is flat. Let (R, m, K) be
a regular local domain. By the Cohen Structure Theorem, we have

R~ K[xy,...,z,].
By Remark 4.1.7, K[F.x1, ..., Fix,] is a free K[z, ..., z,]-module, thus
K[zq,...,x,] C K[Fyx1, ..., Fix,]

is a flat extension. Since F,K is a flat K-module, F.K @k K[F.x1, ..., Fix,]
is also flat. By properties of extension of scalars, we have that F,K ®p
K [F.xy, ..., Fix,] = F.K [Fixy, ..., Fix,], Thus we have that

F.K ®k K [Fyxy, ..., Foxy) ~ WK [Fixy, ..., Fixy)

(Foxq, ..., F*.Tn)j (Fixy, ..., Fux,)’
F.K K|F.xq,..., Fa, . . VT, ..., Fur,
~ Jim Rk K [Fyr F:E]ghmFK[Fxl Fx]
« (Fixy, ..., Fur,) < (Fixy,..., Fua,)

= F,KQxK[F.xy,..., Fur,| 2 FE.K[Fux, ..., Fa,].
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We conclude that F,R is flat for R, because a composition of flat maps
is flat.

Now that we know some properties from the Frobenius homomorphism,
we are ready to introduce the first F-singularity.

Definition 4.1.15. We say that a domain R is F-finite if F.R is a finitely
generated R-module.

Remark 4.1.16. Quotients and localizations of a F-finite ring, are also

F-finite. In addition, any finitely generated algebra over a F-finite ring is
F-finite.

4.2 F-finiteness in Excellence Rings
In this section we prove an equivalence from the main result.
Definition 4.2.1. Let R be a ring.

e We say that R is a Grothendieck ring or a G-ring if it is Noetherian
and for every P € Spec (R),

Rp — é;
15 reqular.

o We say that R is a J-2 ring if for every finitely generated R-algebra
S, the singular points of Spec (S) form a closed subset.

o We say that R is universally catenary if every finitely generated
R-algebra are catenary rings.

o We say that R is excellent if it is a universally catenary, J-2, G-ring.
Example 4.2.2. Some examples of excellent rings are

e fields,

e complete Noetherian rings

o Clzy,...,z], Rlxy, ..., x,]
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Remark 4.2.3. If R is an excellent ring and W any multiplicative set, then
Ry is also excellent. In addition, fnitely generated algebras are also excellent,
for instance the coordinate ring of a variety over C and R.

In order to prove the equivalence, we mention the following lemma.

Lemma 4.2.4. Let A be an excellent domain. The integral closure of A in
any finite extension of its fraction field is finite as a A-module.

Theorem 4.2.5. Let R be a Noetherian domain. Then R is F-finite if and
only if it is excellent and its fraction field is F'-finite.

Proof. First, suppose R is F-finite and K = Frac (R). Then R is a finitely
generated RP-module. Note that

R®p» KP 2R @po (Ro))”
=R Qpp Rzgo)p
=Ly
=R
—K.

As KP? is a RP-module, it is finitely generated. Thus, R ®g» KP? is finitely
generated and RP-module. Note RP is a KP-module, and so, K = R Qg» K?
is a finitely generated KP-module. We recall that F-finite Noetherian rings
are excellent | , Theorem 2.5] .

Now, as R? = R as rings, then RP is also an excellent ring. On the other
hand, K is a finitely generated KP-module, by Lemma 4.2.4, the integral
closure of RP in K is a finitely generated RP-module. Let » € R. Then we
have the polynomial f (z) =z —r in K [z], such that f (r) = 0. Hence, R is
contained in the integral closure of RP. Since RP is Noetherian, we conclude
that R is a finitely generated RP-module. |

4.3 F-split domains

The usual definition of “a splitting map” can be specialized to the Frobenius
map. This brings the following definition.
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Definition 4.3.1. Let R be a domain. We say that R is Frobenius split,
or F-split if there is a map

p: F,R— R
such that po F' = Idg.
Remark 4.3.2. Saying that R is F-split is equivalent to the following:
e there exists 7 € Hom (FL R, R) such that = (F,1) = 1, and
o NR= R® M, with M an R-module.
The following definitions are examples of F-split rings.

Definition 4.3.3. Let K be a field, S = [x1,. .., x,] be a polinomial ring and
INk, P be an square free monomial ideal, where each P, = ({z; | j € S;i})
is a monomial prime ideal. Then the ring R/I is called a Stanley-Reisner
ring.

Definition 4.3.4.

1. (Generic) If X = (z;;) is an m X r matriz of variables, then I,(X) is
the ideal of R = k[X] generated by the t-minors of X.

2. (Symmetric) IfY = (y; ;) is an m xm generic symmetric matriz, i.e.,
Yij = yji for every 1 < i,5 < m, then L,(Y) is the ideal of R = k[Y]
generated by the t-minors of Y. The minors [iy, ..., i|j1,- .., 7] such
that iy < jg for every 1 < s < t are called doset minors and they
generate I;(Y).

3. (Skew-symmetric) Let Z = (z; ;) be an m x m generic skew sym-

metric matriz, i.e., z,; = —z; for every 1 < i < j < m, and
zi; = 0 for every 1 < i < m. The minors of the form [iy, ... iy ==
[i1, .. io|in, .. . i) are squares of certain polynomials of R = k[Z].

These polynomials are called the Pfaffians of Z. The ideal Py(Z) is
the one generated by the 2t-Pfaffians of Z.

Remark 4.3.5. Let ¢ € R be a nonzero element with e € N and 7 €
Hom (F°R, R) such that 7 (F¢c) = 1. Then take § = mo x Féco F*~! where
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x F¢c is the map defined by r — rFfc. We have that

0 (F.1) =(moxFfco F* ) (F.1)
=(mo xFfc) (Fi1)
=7 (F{c)
=1

This implies that R is F-split.

Proposition 4.3.6. If (R, m) is a F-finite reqular local domain, then R is
F-split.

Proof. Note that, by Theorem 4.1.14, F,R is flat and finitely generated, and
so, it is also free. Thus, any minimal set of generators is a free basis for
F.R. By Theorem 2.0.20, we find one by choosing a basis for F,R/mF,R =
F, (R/m[p]). We take the element F,1 as part of a basis for F, R, and consider
the projection

m:(F1)R® (Fb)R-- @ (Fubj))R - R
(Fu1) 70 @ (Fiby) i -+ @ (Fuby) 7y v 1o,

Finally, we have that
(w0 F) (1) =n (17)
=7 (F,1)
=1.
We conclude that R is F-split. [ |

Proposition 4.3.7. A domain R is F-split if and only if the module R/ Im 1
15 zero, where v is defined as

¥ : Hom (F.R, R) -»R
oo (Fil).

Proof. We first assume that R is F-split. Then there exists 7 € Hom (F. R, R)
such that 7o F' = Id. By Theorem 2.0.25, v is surjective. Hence R/Im is
ZEro.

Conversely, if R/Im1) is zero, then Im = R. Appliying the Theorem

2.0.25, we get that the Frobenius map splits.
|
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Corollary 4.3.8. A domain R is F-split if and only if Ry is also F-split
Vm € Max (R).

Proof. This follows from Proposition 4.3.7 and Theorem 2.0.23. |

4.4 F-regular domains

We introduce another class of rings closely related to the F-splitting.

Definition 4.4.1. Let R be a F-finite domain. We say that R is F'-regular
if for every ¢ # 0 there exists e € N such that the R-module map

R— F/R
1— Ffe.

splits as a map of R-modules. This is, there existe € N and 7 € Hom (FR, R)
such that m (Ffc) = 1.

This class of rings was introduced by Hochster and Huneke | | with
the name “strongly F-regularity” along with other related notions. We recall
that Datta and Smith | | called it “F-split regularity”. Throughout this
work we simple called it F-regularity.

Theorem 4.4.2 (| ). Let R be a F-finite domain. Then R is F-regular
if and only iof
. free. rank F*R 0
eon  ramk FeR e
The limit of the Theorem 4.4.2 is called F-signature. It first appeared
implicity in the work of of Smith and Van den Bergh | ]. Later Huneke
and Leuschke | | coined the term if the limitexist. The convergence of
F-signature was proven by Tucker | |.
Now we give some examples of F-regular rings.

Example 4.4.3.
e Determinantal varieties,
e Cluster-algebras | ]

e Invariant rings | ]
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e Toric rings | ]

Remark 4.4.4. Note that if we consider ¢ = 0 in the Definition 4.4.1, then
the map

p:R—F{R
1+ Ffe,
splits. Hence, there exists 7 : F°R — R such that 7 (F¢c) = 1. Thus,
1 =7 (F0)=7(rF0)=(royp)(r)=r,
Vr € R. In particular, take r = 0. Then 1 = 0, this is R = {0}.

Remark 4.4.5. Let R be a F-regular Noetherian domain and ¢ = 1. There
exist e € Nand 7 € Hom (FfR, R) such that 7 (Ff1) = 1. Note that ife = 1,
we are done. Now, consider the homomorphism 6 = 7o F°~!. Then we have

0 (F.1) = (7'[' o Fffl) (F,1)
=7 (F¢1)
=1

Therefore R is F-split.

Theorem 4.4.6. If (R,m) is a Noetherian local F-finite reqular domain,
then R is F'-reqular.

Proof. Take ¢ # 0 in R. There exists e € N such that ¢ ¢ m‘], by Theorem
2.0.15. Thus Ffc ¢ FemlP’l. By Theorem 2.0.20, Ffc is part of a generating
set for FYR as R-module. By Theorem 4.1.14, F¢R is a free R-module. Let
{Ffc,by,...b;} be a basis. Consider the projection

T (Fe)Re (Fb)R-- @ (Fubj)) R — R
(Fie)ro @ (Fibi)ry -+ - & (Fibj) ry = ro.

Note that 7 (Ffc) = 1. Thus R is F-regular.
|

Proposition 4.4.7. Let i : S — R be an inclusion of Noetherian domains
that splits as S-modules. If R is F-reqular, then S is also F-reqular.
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Proof. We have a homomorphism & such that ® o7 = Idg. In addition,
since R is regular, Ve € R — {0}, there exists e € N and 7. € Hom (FfR, R)
such that 7. (Ffc) = 1. Take d € S — {0} and ¢ = i (d). Consider the map
04 = ® om0 Ffi. We have that

04 (Fid) = (P om0 F) (Fid)
— (@ o m0) (Frc)
=® (1r)
1.
We conclude that S is F-regular. |

Hence, we note the strong relation between this two notions of F-splitness
and F-regularity. This yields to the following definition.

Definition 4.4.8. Let R be an F'-finite domain, and c be a non-zero element.
We say that R is eventually F-split along c if there exists e € N such
that

R — F{R
1 Ffc
splits.

Note that, R is F-regular if and only if it is F-split along every non-zero
element.

Remark 4.4.9. Let R be eventually F-split along some ¢, and d € R such
that ¢ = dh for some h. Thus there exist ¢ € N and 7 € Hom (F¢R, R) such
that 7 (Ffc) = 1.
Consider the following map
0:F;R—R
Férvw—m (Fir - F2h) .

Since 0 (Ffd) = 1, we have that R is eventually F-split along d. Since R
is commutative, R is also F-split along h.

Theorem 4.4.10. Let R be an F-finite Noetherian domain.

a) If R is F-regular, then so is Ry for any multiplicative system W.
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b) If Ry is F-regular for every m € Max (R), then R is F-regular.

Proof.
a) Let CeRr- {0}. We show that Ry is eventually F-split along ‘on
w w
1
suffices to prove it for E, as C_Sx
1 w 1 w

Note that ¢ is a non-zero element, thus there exist e € N and © €
Hom (FfR, R) such that 7 (Ffc) = 1. Consider the homomorphism

W - F*ERW — Ry
e
R n0)
1 1

e

F F° 1
We have that my ( IC) = W(l* ¢) =71 Thus, Ry is F- split along

%. We conclude that it is F-regular.

b) Take ¢ # 0. By Theorem 2.0.25, for each maximal ideal m the map

e, - Hom (F{"R, R),, = Rn
Fen
1
is surjective for any e, > 0. Fix m € Max(R). We have that,
(R/ Im 77Z)€n1)m = Rm/ (Im l/Jem)m = 0
Let A.,, = R/Im1,, and P € Ass(A.,). Then we have that

R/P — A., = (R/P),, = (Aep)n =0

S (R/P) =0
=P gz m.

Hence, PN R m # (), VP € Ass(A.,). Consider an element in this
intersection, fp. Since A., is a finitely generated R-module, it has
finitely many associated primes, so we take the element

fm,em = H fP

PecAss(Acn)
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which is not in m. Moreover, Ass(4,,); = 0, because for every P €
Ass (A, ) we have that PN {fn_ |n €N} =0. Hence (A,) = 0.

Note that we can get elements e, and fy . for each maximal ideal m.
Thus, we consider

Ufmvem = {P S Spec <R) |fm75m ¢ P}

fm,em

which are basic open sets in the Zariski topology, and the open set

UneMax(R)U fy -

Since Spec (R) is quasi-compact and this union is a cover for it, there
exists a finite subcover

Upnys -+ Upn,.
On the other hand, Vm € Max (R), we have an element e, > 0 such
that the map 1., : Hom (Ff"R, R) . — Ry, is surjective.

Consider

é:max{eml,...emj}.

Hence, Vm € Max (R) the map 1; : Hom (FfR, R)m — Ry, is surjective.
By the Theorem 2.0.24, the map

¢ : Hom (F{R,R) —»R
¢ ¢ (Fic),
is surjective. Thus, we obtain a map
¢: F°R —-R
Ffec 1.

On the other hand, since Ry, is F-regular, each R, is F’-split, by Remark
4.4.5. By Corollary 4.3.8, R is F-split. Therefore, we can repeatedly
compose ¢ with a Frobienius splitting in order to get a splitling for a
larger e € N. We conclude R is F-regular.

Furthermore, under certain conditions, F-regularity is preserved by lo-
calization at an element.
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Theorem 4.4.11. Let R be an F-finite Noetherian domain. Suppose that
d € R is such that Ry is F-reqular. If there exist e € N and an R-module
map
m: FR—R
Ffd— 1,

then R 1s F'-reqular.

Proof. Note that R is F-split along d because there exists m which is the
splitting of the morphism
p:R— F/R
1— Fid.

By Remark 4.3.5, R is F-split.
Take ¢ # 0 and the homomorphism

¥¢ : Hom (FJR, R) — R
¢ — o (Fle)
for some f > 0. Since Rq is F-regular, we have that (15) , is surjective. Hence

we have that ¢y ® Ry is surjective. Therefore, there exists and element such
that

n

(s @ Ra) (Z (ki o )) — 1 withr; € Rand k; € F/R

dm
=1

=>Z(wf Ki) m)zl

:>Z ( wf K ) =1
’r‘l dm m; .
:>ZZ:1 (ri o Uy (1)) =1 where m = max{m; |i=1,...,n}

= Z (Tidm_mi¢f (/il)) =d"
=1
=1
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This is, d™ € Im )y, for some m. Thus, there exists ¢ € Hom (F*fR, R)
such that ¢ (Ff c) = d™. Without loss of generality we assume that m = p
with t € Z.

Let 0 : F'R — R be a F-splitting. Note that 7 o Ff0 o F/*¢¢ gives a
splitting for

R — Fe+t+fR
1— Fetttie,

Thus R is F-split along c. Since ¢ was an arbitrary element, we conclude
that R is F- regular.
|

Proposition 4.4.12. Let (R,m) be a F-finite Noetherian domain. Then R
1s F-reqular if and only if the completion R at m is F'-regqular.

Proof. Note that if we take ¢ # 0, then the image of ¢ in R is not zero.
Hence, for every e € N we have a map

¢ Hom (F{R,R) — R
¢ — ¢ (Fc)

which is surjective if and only if the map ¢ ® R remains surjective, by faith-
fulness of R. R

Suppose that R is F-regular. Then v is surjective for a large e. Thus R
is F-regular.

Now, suppose R is F-regular. We now show that there exists ¢ € R such
that R, is regular. Since R is a F-finite local domain, F,R is torsion free.
Then F,R® K = K* for some « € N. Let {vq,...,v,}. We have te maps

FR—— FFRK +————3 K¢

ay; Qe g
e1+ -+ —ey

Vv — v; ® 1l +—
bl,i ba,i

56



This is, F,R —— K is an inclusion. Let b = Hj’:tuzl bs;. Note that
by : F,R — R" is also an inclusion, and so is by, : (FLR), — Rj. Thus, there

—

exists b such that (F,R), is a free module. We have that (F,R), = R® (FiR),
is a free R-module. Hence <(F*R)b> is free, VP € Spec (R). We conclude
P

o —

that (F,.R), is regular, so it is F-regular.
|

Remark 4.4.13. Let R be a Noetherian domain whose regular locus is open.
Note that the regular locus is not empty. Indeed, consider the prime ideal
0. Then Ry is a zero-dimensional local domain, thus it is a field and so, it is
regular.

The regular locus is open, therefore it is the complement of closed set

V(1) ={Q € Spec(R) I € Q},

for some ideal I. Note that I has height at least one. Now, since I ¢ P, for
any minimal prime P, by Prime Avoidence Theorem, we choose ¢ € [ such
that R. is regular.

Proposition 4.4.14. If R is a Noetherian domain whose regular locus is
open, then there is an element ¢ # 0 such that R, is reqular.

Proof. First, note that R is a field, and so it is regular. This is, the regular
locus is nor empty. Thus, there exists and ideal I, such that the regular locus

of Ris V (I)°. Let ¢ € I\ {0}. We have that

V{{ch)cv).
Therefore Spec (R,) C V (I)°. |

Theorem 4.4.15. Let (R,m) be a F-finite Noetherian domain. The locus
points P € Spec (R) where Rp is F-regular is open.

Proof. Since R is F-finite, the regular locus is open. By Remark 4.4.13,
there exists d # 0 such that Ry is regular, thus F-regular. Note that for
every g € R we have that (Ry) g 18 F-regular, because it is the localization of
a regular ring. Hence (R,), is also F-regular.

Consider the map

¢ Hom (F{R,R) — R
¢ = ¢ (Fd).
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Let m be in the F-regular locus of R. Then R, is F-regular and the morphism

Yy« (Hom (F{R, R)),, = Ru
P = ¢ (Fd),,
is surjective for some e > 0. Thus m ¢ Supp (R/Im), and Im¢) € m. Take

g € Imey \ m. Then there exists ¢ € Hom (F¢R, R) such that ¢ (Ffd) = g.
Hence we have

¢g: FiRy — R,
(Fid), — 1.
By Theorem 4.4.11, R, is F-regular.

Note that P, € Spec (R,). Then g is not in the contraction of P, in R.
Consider

U = {P € Spec (R)|P = Py for some P, € Spec (R,)} .

Since U is the complement of a closed set in R, it is open and m € U.
Now, we show that Rp is F-regular VP € U.
Since (Ry)p = Rp and Ry is F-regular, by Theorem 4.4.10, we conclude
that Rp, is F-regular for every P € U.
|

Proposition 4.4.16. If R is a F-reqular Noetherian domain, then it is nor-
mal.

Proof. Take T € Frac (R) integral over R, we show that “eR.
Y Y

x
Since — is integral over R, we have an integral equation
Y

T n T n—1
B o) e
Y Yy

withr, e R, Vi=1,...,n.
Note that we have the isomorphism

R[]/ (z"+rz""" 4 +r,) > R {ﬂ

f+<z”+r1z"_1—|—--~+7“n>Hf(g),
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with 2z an indeterminate.

x
Hence, R |—| is a finite integral extension of R. Using the division algo-
)
rithm, we obtain that the generators are

EIORRON

Thus, there exists ¢ # 0 such that cR {f] CR.
Y

€

p
Then ¢ (R F}) C R for all e € N. This is, ca?” € (ype), with e > 0.
Yy
We have that

cx?” =s.y” for some s, € S
= FY (cxpe) =F7 (seype)
= oI (c) =yFY (se)

Finally, since R is F-regular, there exists # € Hom (F¢R, R), such that
7 (Ffc) = 1. Applying m, we get

x =y (F (sc))-
Thus = € (y), and so, y divides x. We conclude that Y eR. [ |
Y

Proposition 4.4.17. If R be a F-regular Noetherian domain, then R 1is
Cohen-Macaulay.

Proof. We may assume, without loss of generality, that (R, m, K) is a com-
plete local domain. Let x1,...,z, be a system of parameters for R. We
proceed by contradiction. Suppose these elements do not form a regu-
lar sequence. Then for some i there exists z ¢ (z1,...,2;_1) such that

4 - Thus, 27'z!" 7 ) for e > 1, and
zx; € (T1,...,%i1). us, 2Pl e () ... 20 ) for e > 1, and so,

we get that
p° D¢

pe pe
T, =TTy T

< i

Take A = K[zy,...,x,]. Note that A C R is a complete regular domain
and it is a finitely generated R-module. Consider the inclusions
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A—— Alz] —— R.

For each of these rings {x1,...,x4} is a system of parameters.
By Theorems 4.4.6 and Proposition 4.4.16, A is normal, so we take f a
minimal polynomial over A for z. Observe that

Al] = AL/ (f(8) = Ky, o on, 1/ (f) -

This is A[z] is a Cohen-Macaulay ring. Denote B = A[z]. By Theorem
2.0.26, there exists 7 € Homp (R, B) such that 7 (1) = ¢, for some ¢ # 0.
Applying 7, we get an equation in B:

= = = =
7r (zp z¥ ) =7 <7“1:v11) + Ti_larﬁ-ll)
€

P (D) =7m(r) 2l + -+ p(risy) b,

€ €

—1-

)
%

Palc=m(r)al +---+7(risq)a?
Now, since B is Cohen-Macaulay, {x’fe, . ,xﬁe} is a system of parame-
ters. Then, z*" is a non-zero divisor in A [z] / (xzfe, . ,xf;) A[z]. Thus for
every e € N,

€ €

P € (x’l’ ,...,xf_l) Alz] C (x’f ,...,xf_1> R,
which tells us that cz?” = 3135’1’6 + —i—si_lejl with s; € R. Hence
2Fice=xFisy+ -+ o 1 Ffsi

Seeing that R is F-regular, there exists 7 : FfR — R such that w (F¢c) =
1 for a large e. Applying m, we have that z € (z1,...,2;-1). Which is a
contradiction. Thus, R is Cohen-Macaulay. [

4.5 F-pure domians

The next F-singularity we aim to study is F-purity. This definition follows
from the usual definition of purity for maps.

Definition 4.5.1. Let R be a ring. An exact sequence of R-modules
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0 s E/ FE s B s 0

~

15 called pure if for every R-module M
0 — FFOM — EQM —— E"®M —— 0
15 exact.
Definition 4.5.2. Let R be a ring. A morphism of R-modules
EF —— F
15 called pure if for every R-module M
FeM — EQM

15 injective. In particular, if the Frobenius map is pure, we say that R is
F-pure.

An example of a F-pure ring is the following definition.

Definition 4.5.3 (| ). Let wy,...,wyq be variables. For an integer
J such that 1 < j < d, we denote by W; the j x (d+1—j) Hankel matriz,
which has the following entries

wyp Wy - Why1—j
Wye W3

Wj -
w] .. o .. wd

For1 <t < min{j,d+1— j}, the ideal I,(W;) of R = k[x1,...,x4] is the
one generated by the t-minors of W;.

Any F-pure ring satifies the vanishing theorem in its sheaf cohomology
[ |. To understand this concept, we show some properties from pure
maps.

Proposition 4.5.4. Let R be a domain and o : M — N an R-linear map
that splits. Then, ¢ is pure.
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Proof. As ¢ splits, we have that N = M &S for some R-module S. Consider
an R-module T'. Then

N@prT =(M@rT)® (S®rT).

Hence the map ¢ @g Idr : M @rT — N ®g T is injective. We conclude
® 1s pure. |

Proposition 4.5.5. Let ¢ : R — A be a faithfully flat extension of domains.
Then, ¢ 1s pure.

Proof. Consider the following exact sequence

0 —— Ker(p) > R > A > Coker (¢) —— 0.

It induces the exact sequence

0 —— Ker(p)®r A > A » AQr A —— Coker () g A —— 0.

Note that the map A — A ®p A is injective, so Ker (p) ®g A = 0. Now
let T' be a R-module. We have that the map T"®r A - T Qr A Qr A is
injective. As A is a faithfully flat R-module, this happens if and only if the
map

R KRR T — A Xpr T

is injective. Hence, ¢ is pure. |

Definition 4.5.6. Consider the homomorphism of free R-modules of finite
rank

o R — R%™,
We define the map
¢* : Hom (R®*™ R) — Hom (R®™, R) .
If M s a free module of finite rank, then we define
M* = Hom (M, R) .
We stick with this notation throughout the rest of this chapter.

Theorem 4.5.7. Let R be a ring,
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be an exact sequence, and

SOZF1—>F0

be a homomorphism of free modules of finite rank. Let M = Coker ¢ and
M’ = Coker p*. Then

Ker (M'® E' — M' @ E) = Coker (Hom (M, E) — Hom (M, E")) .
Proof. Consider

E-0 N R LN

and

F: F, 25 F —"5s M 0.

We have the following sequences

0 E//* B E* o

and

\ * ﬂ—*\ * QD*\ * 4
0 > M > I Fy

2\
<

2\

(@]

Form the following double complex
0 0

~

M*® E' —— M*

~ ~

QF —— M*® E”

N ~

FOF — > FQFE — F;QE"

~

FrQFE — F}

~ ~

®QF —— Ff® FE".

The modules Fj are free, so they are projective. In addition, Hom (F;, @) =
Hom (F;, R) ® o, so we get
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~ ~ ~

0 — M*QF — M*QF —— M*® E"

N ~ ~

0 — > F®F —— FQFE —— Fi®E — 0

N ~ ~

0 — F/QFE — FfQEF —— Ff@FE" —— 0.
By the right exactness of the tensor product, we have the sequence
Fec Y rec 2% vec —o.

for every R-module G. Then, M’ ® G = Coker (¢* ® G). Now we complete
the complex and simplify the notation

Applying the Snake’s Lemma, we have the exact sequence

M*QFE —— M*®Q@FE —— M*® E"

d
MFE —— MQF —— M ®Q E".
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We have that
M* ® E//

Ker (d)
Note that, Ker (d) = Im (Idy/~ ®3) y Im (d) = Ker (Idy;s ®«). Therefore,

= Im (d)

M*® E"
Coker (Idp+ ®p) :m

M*® E"
"~ Ker (d)
=1Im (d)
= Ker (Idyy ®a) .

Corollary 4.5.8. Let R be a Noetherian ring. Then the exact sequence

0 s B FE s B s 0

~

1s pure if and only if for every finitely presented module N, the morphism
6 : Hom (N, E) — Hom (N, E")
18 surjective.

Proof. For this part, we use a finitely presented module N. Then, we have
an exact sequence

0 s K —“ s F -2 N s 0

where both K and F' are free module of finite rank. Consider the R-module
map
w': F*— K*.
Note that F* and K* are finitely generated. Hence, Im (w*) is finitely
generated. Let M = Coker (w*), which is finitely presented.

Now, suppose the exact sequence from the statement is pure. By Theorem
4.5.7, we have the exact sequence

Hom (N, E) —— Hom (N, E") —5 M ® E' —» M ®E.
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Since h is injective, we get Imd = Kerd = 0. We conclude that j is
surjective.

For the converse, we use that M is finitely presented. Note that w** = w
and Cokerw** = N. Likewise, applying Theorem 4.5.7, we get the exact
sequence

Hom (M, E) —— Hom (M,E") —%+ N@ E' —» N E.

Then Ker b = Imd = 0. As the functor e @ N is right-exact, we conclude

that the exact sequence in the statement is pure.
|

Corollary 4.5.9. Let R be a Noetherian ring. Then the eract sequence

0 s B s B s B s 0.

If E" is finitely presented, then the exact sequence is pure if and only if it
splits.

Proof. Let # : E — E” be the morphism in the statement. Suppose the
sequence is pure. By the first part, we have

Hom (E", F) —— Hom (E",E") —— 0.

In particular, there exists a ¢ € Hom (E”, E') such that it is the preimage
of the identity homomorphism. Therefore

(pof)(1)=1.

Finally, let N be a finitely presented module, and be ¢ a splitting for
0. We show that for every § € Hom (N, E”), there exists an element in
a € Hom (N, F) such that § o « = . Take o = ¢ o 5. Then

(0 oa)(z)=(0opof)(x)
=p (z).
By Corollary 4.5.8, we are done. [ ]

Corollary 4.5.10. Let ¢ : M — N be a pure map of R-modules. Then ¢ is
split if N/ (M) is finitely presented.

Proof. Follows from Corollary 4.5.9. |
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Theorem 4.5.11. Let R be a Noetherian subring of S. Then
Yv:R—— S

is pure if and only if R is a direct summand of each finitely generated R-
module N of S such that R C N. In fact, if S is module-finite over R, then
¥ 1s pure if and only if R is a direct summand of S.

Proof. First suppose that v is pure. Since RQgr M — S ®pg M, we have that
R®r M — N ®pg M is injective for every R-module M. By the Corollary
4.5.9, the sequence splits, this is N = R & Coker i.

Now,we show that i is pure. We may think S as an R-module, so it is
finitely generated and thus it is finitely presented. Therefore, S = R ® M
for some R-module M, this is ¢ splits. By Corollary 4.5.9, v is pure.

The second part follows. |

Corollary 4.5.12. Let R be an excellent Noetherian domain whose fraction
field is F-finite. Then R is F-split if and only if it is F-pure.

Proof. By Theorem 4.2.5, R is F-finite. By Corollary 4.5.8, we are done. M

4.6 F-pure regular domains

In last section of this chapter we define F-pure regularity and its properties.
For instance, it is cosely related to F-purity and similar F-splitting.

Definition 4.6.1. Let ¢ be an element in a domain R. Then R is said to be
F-pure along c if there exists e > 0 such that the map

Aot R— F{R
1— Ffc

1s pure as R-module map. Moreover, if R is F-pure along c for every c €
R — {0}, then it is said to be F-pure regular.

Remark 4.6.2. A domain R is F-pure if and only if it is F-pure along 1.

Remark 4.6.3. By Theorem 4.2.5 and Corollary 4.5.12. If R is an F-finite
Noetherian domain, then the map A¢ is pure if and only if it splits.
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Remark 4.6.4. If R is F-finite, then F-pure regularity is equivalent to F-
regularity.

Lemma 4.6.5. Let R be a domain an A and R-algebra.

1.

If M - N and N — @ are pure homomorphisms of R-modules, then
the composition is also pure.

If a composition of R-module maps
M— N—=Q

18 pure, then M — N 1s pure.

If M — N 1is a pure R-linear map, then
A ®R M— A ®R N

1s a pure A-linear map.
If M — N is a pure A-linear map, then it is also pure as R-linear map.

The R-linear map M — N s pure if and only if Mp — Np is pure for
each P € Spec(R);

A faithfully flat map is pure.

Let (A, <) be a direct set with a least element Xo, {Nx},cp be a direct
limit system of R-modules, and M — Ny, be a R-linear map. Then
M — lim_, Ny is pure if and only if M — Ny is pure VA € A.

Let (R,m) be a local ring. Then a map of modules R — N is pure if
and only if E ®r R — E ®g N is injective, where E is the injective
hull of R/m.

Theorem 4.6.6. Let R be a domain.

1.

2.

If R is F-pure along a product cd, then it is also F-pure along ¢ and
d. In paricular, if R is F-pure along some element, then R is F-pure.

Let R be F-pure reqular. If W C R is a multiplicative set, then Ry s
F-pure reqular.
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3. Let ¢ : R — T be a pure homomorphism of domains. If T s F-pure
reqular, then R is also F-pure reqular. In particular, if @ is faithfully
flat and T is F-pure regqular, then R is F-pure regqular.

4. Let Rq,..., R, be domains. If R = Ry X --- X R,, id F-pure reqular,
then each R; is F'-pure reqular.

Proof.

1. As the map xd is R-linear, so it is X F,d. On the other hand, R is
F-pure along cd, so there exists e > 0 such that \¢; is pure. Note that
Aoy = xFud o X, By Lemma 4.6.5, we get that \{ is pure. Likewise,
we get that A§ is pure, because I? is commutative. For the second part,
suppose R is F-pure along an element c. As ¢ = c¢- 1, we have that R
is F-pure along 1. By Remark 4.6.2, R is F-pure.

2. Let a € Ry \ {0}. The a = 2 with ¢ # 0 and d € W. As R is F-pure

along c, there exists e > 0 such that the map A¢ is pure. By Lemma
4.6.5 and the isomorphism (FYR)y, = FYRw, thet map Af, is also
pure.

On the other hand, the map

Y1/q 1 Rw — Ry

1r—>1
d

is an isomorphism of Ry-modules. Hence the Ry -module map
Fibyya : FiRw — F{Rw

1—

Fed

is also an isomorphism of Ry-modules. As 1,4 is pure, we get that
Fgipy)q is a pure Ryy-linear map. Therefore, the composition F, /4 0
Ai/l is a pure Ry-linear map. Since F{1);/q 0 )\i/l = /\i/d, we are done.

3. First, note that ¢ is injective, because it is pure. Take ¢ € R\ {0}.
Then T is F-pure along ¢ (c¢). And so, there exists e > 0 such that
/\;(C) is a pure T-linear map.
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Consider the composition ¢ o )\fp(c). It is also a pure T-linear map, and
so, a pure R-linear map. In addition, we have the following commuta-
tive diagram

R—%

T
l*ﬁ l’\i(c)

Fer 9 per

By Lemma 4.6.5, X¢ is pure. Now, if ¢ is faithfully flat, then it is pure
by Lemma 4.6.5.

. Note that the set
W=R; X xR 1 X{1} XxRiy1 X+ XR,
is a multiplicative set of R. In addition, the map

m: Rs — R;

™ Ti Tn
— = ) e
s1 1 Sn

is an isomorpshism. Thus, we show that Ry is F-pure regular. By the
number 2 of this theorem, we are done.

Remark 4.6.7. Let R be F-pure along some element ¢. Then R is F-pure.
Moreover, the map A¢ is pure. This implies that

F: F,R — F, (F°R)
F.1— F,(F.c)

is a pure F,R-linear map. By Lemma 4.6.5, it is also a R-linear map. This
the composition F,\¢o F'is F-pure. Note that F,A\¢o F = \¢™1. We conclude
that for each n > e, the map A\°*! is pure.

Theorem 4.6.8. A reqular local ring (R, m) is F-pure reqular.
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Proof. Note that N,somP?l = 0, by the Krull Intersection theorem. Let
c € R\ {0}. Thus there exists e > 0 such that ¢ ¢ mPl. We now prove that
A¢ is pure. Let E be the injective hull of R/m. By Lemma 4.6.5, it suffices
to check that \{ ® E is injective.

Let {z1,...x,} be the minimal set of generators for m. As

E = lim R/ (zf,...,2),

t—inf T

we have that
FFR®E = lim R/ (xﬁpe, . :cff) .
t—inf
The element \¢ ® E (1 ® €) = F¢c ® e. Therefore, as ¢ ¢ mP it is not zero
in F*R ® E. This is, the socle of F in R/m is not in the kernel of \¢ ® E,
hence it is an injective map. By Lemma 4.6.5, \{ ® E is pure. We conclude
(R,m) is F-pure regular. [

Proposition 4.6.9. Let R be a F-pure regular domain. Then R is normal.

Proof. Let " ¢ Frac (R) be an integral element over R. Then there exists a
s

minimal polynomial f (x) = 2" + a1z" ! + - -+ + ap, with a; € R, such that

f <i> = (0. We have that

S

4 sar T 4 4+ 5" =0

which implies that 7™ € (s) and r € (s). Thus there exists h € N such that

for each n
(r,s)"" = (s)" (r, )"
Let ¢ = s". Then s"™ € (s)" (r,s)" C (s)". Take n = p°. Consider the

map A¢ which is pure and induce the injective map

R/ (s) = R/ (s) ®r F{R= F{ (R/(s))
[r] — FZ[r"¢].

Note that [r] is in the kernel of this map, because " € (s). This is, r € (s),
and so, s|r. We conclude that 2y
s
[
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Proposition 4.6.10. Let R be a domain. The set
I ={ce R| R is not F-pure along c}

is closed under multiplication by R and R\ I is multiplicative closed. More-
over, if I is closed under addition, then it is a prime ideal.

Proof. First we show that I is closed under multiplication by elements in R.
Let ¢ € I and r € R. Proceed by contradiction. Suppose rc ¢ I. Then R is
F-pure along rc, which implies that it is also F-pure along c.

Secondly, let ¢,d ¢ I. Then there exist e and [ intergers such that the
maps A¢ and A, are pure. Consider the induced pure R-linear map

Fe (X)) : FR — FY (FIR)
Ffl— F¢ (Fld).

Note that F (X)) o A¢ = AG! and it is pure. Thus, ¢”'d ¢ I. Suppose cd € 1.

As 7t € R, & d € I, which is a contradiction. In addition, if R\ I # 0,
then 1 € R\ I. Otherwise, R would be F-pure regular.
Finally, if I is closed under addition, then [ is a prime ideal. |
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Chapter 5

Frobenius in Valuation Rings

In this chapter we study the Frobenius map on valuation domains. Moreover,
we relate F-singularities with this kind of rings. The main goal is describe
how Frobenius acts on this class of rings.

5.1 Flatness and purity of Frobenius in Val-
uation rings

Before starting the study of F-singularities in valuation rings we recall an

important property about their modules.

Lemma 5.1.1. A finitely generated torsion free module over a valuation ring
is free. In particular, a torsion free module over a valuation ring is flat.

Proof. Let V' be a valuation domain and M be a finitely generated torsion
free V-module. Let {m,...,m,} be a minimal set of generators of M.

We proceed by contradiction. Suppose there exists a non-trivial relation
among the generators. Consider vq,...,v, € V be such that

vymy + -+ v,m, = 0.

The set of ideals of V' is totally ordered so, without loss of generality, we
assume that

(v) € (1),

Vi=2,...,n. This is, v; = a;v; Vi = 2,...,n. Hence, we have that

vy (my + agma + -+ - + a,m,) = 0.
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Since M is torsion free, we have that
mq + asmsg + - - + apym, =0,

and so, m; = — (4+agmg+ -+ a,m,). The minimal generating set is
{ma,...,m,}, which is a contradiction. Thus, v; = 0 for every i =1,...,n.
We conclude that, {m,...,m,} is a free generating set for M, and thus,
M is free.
Now, for the second part, consider N a torsion free module. Then N is
the direct union of every finitely generated subomdule G. Since the direct
union of flat modules is flat, we get that N is flat. ]

Proposition 5.1.2. Let (V, m, K) be a valuation domian of characteristic p.
Then the Frobenius map s faithfully flat.

Proof. Note that, because V' is a domain, F,V is a torsion free V-module.
By Lemma 5.1.1, F,V is flat, and thus, F' is a flat homomorphism. Let M
be a nonzero V-module. There exists an associated prime P of M. We have
that

\%

v v v v
Note that 0 c . Si o
ote that 0 7 "5 € Py Y b my - PRV

M ®y F,V # 0. We conclude that F,V is faithfully flat.

we have that

Corollary 5.1.3. Every valuation ring (V,m, K) of prime characteristic is
F-pure.

Proof. By Theorem 4.5.5, F' is pure, because it is faithfully flat. [

5.2 F-finite Valuation Rings

Proposition 5.2.1. Let K be an F-finite field. A valuation ring V' of K 1is
F-finite if and only if F.V is a free V-module.

Proof. First, suppose that F,V is a free V-module. Since K ®g F.V = F, K
as K-vector spaces, we have that rankyx F,K = ranky F.V. By hypothesis,
K is F-finite, so [F : K| < oo. Thus, rank F,V < oo, this is, V is F-finite.

Now, let V' be F-finite. Then F,V is finitely generated. As F,V is torsion
free, by Lemma 5.1.1, it is free. |

74



Corollary 5.2.2. LetV be a F-finite valuation domain. Then, V is F-split.

Proof. As V' is F-pure, we have the following exact sequence

0 >V > F.V > VIV —— 0.

Note that F,V is a finite rank torsion-free free module. Thus, F.V/V is
finitely generated. In addition, V' is a finitely generated module. By Corollary
4.5.10, V' is F-split. [

Lemma 5.2.3. Let R be a Noetherian domain such that Frac (R) is F'-finite.
Then R is F-finite if and only if there exists ¢ € Hompge (R, RP) such that

V(1) #0.

Proof. First, we suppose R is F-finite. Since Frac(R) is F-finite, it is F-
split. Let m be a KP-linear splitting of Frobenius. This is, 7 (1) = 1P. Let
P

{fP...., fP} a generating set of R as RP-module, and % their images under
m. Denote the restriction of m to R as ¢. Now, let @ = [T, b0 € R
We get the map ¢ = ¢, which is RP-linear. Note that ¢» : R — RP, and
Y(1)=c #£0.

For the converse, suppose there exists ¢ € Hompgs (R, RP) such that
¥ (1) # 0. Consider the map

:R— R

= e,

where RYY = Hompg» (Hompge (R, R?), RP) and e, is the evaluation map at
r. Note that if x € R is a nonzero element, then we have the map v =
Yo (xxP!), and so v (x) = 2P (1) # 0. We see that 6 is injective, take
x = z — y for any two different elements y, z in R.

We prove that RY = Hompgs (R, RP) is a RP-finitely generated module.
Indeed, let M be a maximal free RP-submodule contained in R. Then

rank (M) = dimgr (M Q@pe K?) = dimgr K = [K : K],

and so M ®pg» KP = RQp» KP as KP-vector spaces. Therefore R/M Qpg» KP =
0, which implies thath R/M is a torsion module. Considering the exact
sequence

0 > M > R » R/IM —— 0,

75



we get that RV < MV, because the dual of a torsion module is zero. Since M
is finitely generated, we have that MY is also finitely generated as RP-module.
Thus, RY is finitely generated, and so R"" is a finitely generated RP-module.
Since R C RYY, we conclude R is a finitely generated RP-module. [

Theorem 5.2.4. Let R be a Noetherian domain whose fraction field is F'-
finite. If R is F-split, then it is F'-finite.

Proof. Let m € Homgs (R, R?) be a splitting. Thus, 7 (1) = 1. By Lemma
5.2.3, R is F-finite. [

Now we state the equivalence between F-splitness and F-finiteness, along
with excellence. This is, we now state the main result of this thesis.

Corollary 5.2.5. Let V' be a discrete valuation domain whose field of frac-
tions is F'-finite. Then the following are equivalent:

1. 'V s F-split;
2. V is F-finite;
3. 'V is excellent.

Proof. As V is a discrete valuation domain, it is Noetherian. Applying The-
orems 5.2.4 and 5.2.2 we get the equivalence between F-splitness and F-
finiteness. Now, Theorem 4.2.5 gives us the equivalence between F-finiteness
and excellent rings. |

5.3 F-pure regular Valuation Rings

Finally, we give some statements before the extended version of the main
theorem.

Proposition 5.3.1. Let (V,m) be a valuation domain. The set of elements
along which V' fails to be pure is the prime ideal

(b - ﬂ€>0m[pe}.
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Proof. Let F.c € ®. Then F.c € mP’ for every e > 0. Consider the residue
field of V', K. Then the map

ANy K:Vey K — FVey K
1®V]€P—>ch®vk?.

As & € mlPl) we have that Féc ®y k = F°1 ®y [0]. Hence, A is not pure
for every e > 0.

Now, consider an element ¢ ¢ mP‘ for some e > 0, and the set ¥ of
submodules of FV containing Ffc. Then ¥ is a directed set under inclusion
with least element the module (F¢c). Take FEN € ¥. There exists a map

MV — FEN
1— Ffc.

In addition, by Lemma 5.1.1, F¢N is free. Moreover, Ffc ¢ mF¢N; other-
wise, F¢c € FemlPl and ¢ € mP] which is a contradiction. By Nakayama’s
Lemma, FCc is part of a basis for F¢N. This implies that AY splits, and so
it is pure.

On the other hand, if F*N C FfM are elements of >, then we have the
commutative diagram

)\N
Vi —— F¢N

N
FeM.

Therefore, we have a direct system consisting of elements
AF*EN - F:N

indexed by X, and injections as the morphisms from the definition. By
Theorem 2.0.27, the direct limit is FV. As the map A g V-linear, A :
V — FfV is pure, by Lemma 4.6.5.

Finally, by Proposition 4.6.10, ® is a prime ideal. |

Corollary 5.3.2. For a valuation ring (V,m), the quotient V/® is a F-pure
reqular domain. Furthermore, V' is F-pure reqular if and only if ® = 0.
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Proof. Note that V/® is a domain whose ideals inherit the order from V. In

addition, its unique maximal ideal is m + ®.

P
Let z = ri—q) € Frac (V/®) be such that x ¢ V/®. Then r does not
s

divide s in V, and so, r ¢ V. As V is a valuaton domain, s € V. Hence
s r
rteV/o.
Finally, since [ﬂe>0m[pe]} = [0], we conclude that V/® is F-pure regular.
The second statement follows from Proposition 5.3.1. [ |

Theorem 5.3.3. Let (V,m) be a valuation domain. Then 'V is F-pure reqular
iof and only if it is either a field or a DVR.

Proof. First, suppose that V' is F-pure regular. We proceed by contradiction.
Suppose there exists P € Spec (V'), such that 0 ¢ P & m.

Take x € m\ P and ¢ € P\ {0}. If ¢|J2" for some n, then there exists
q € V such that 2™ = ge. This implies that 2™ € (¢) C P. Thus x € P,
which is a contradiction. Hence z"|c for every n. In particular, take n = p°
with e € N. We have that ¢ € (1) c mlPl. This is, ¢ € ®. By Corollary
5.3.2, V' is not F-pure regular, which is a contradiction. Therefore, V' has
dimension at most one.

Now, suppose that V' is F-regular. We show I'y, is isomorphic to Z. Let
h be the infimum of I'y,. Then, h is positive. Indeed, let ¢ € m. Note that

v ()

the sequence {—6} converges to 0 when e — oo. In fact, suppose that
e>0
there exists an element x € V' such that for some e
v (c)
pe

€

0<w(x)<

P
Then 0 < v (xpe) < v(c), and so, v (az_) < 0, this implies that 2*°|c.
c

Therefore, ¢ € (x)[pe] c mPl, which contradicts the fact that R is F-pure
regular.

We show that h € T'y,. Note that there exists g such that 0 < g < h.
Suppose h ¢ I'y. Then there exist elements z,y € m such that

h<v(z)<v(y) <h+g.

We have that 0 < v (Q) < g < h, which is a contradiction. Hence, h € T'y.
z
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Suppose there exists an element o € I'y such that h { «. By the division
algorithm o = gh + r, with ¢,r € R. Therefore, » € I'yy and r < h which

is a contradiction. Thus I'y = (h). This is, I'y = Z, this isomorphism
also preserves the order. Hence, by Theorem 3.3.6 V is Noetherian and by
Corollary V' 3.3.10 is a discrete valuation domain. ]

The following is the extended version of the Theorem 5.2.5. It gives us
an extra equivalence which uses the strong relation between F'-regularity and
F-pure regularity.

Theorem 5.3.4 (| ). Let (V,m) be a discrete valuation domain with
F-finite fraction field. The following are equivalent

1. 'V s F-split;
2. V is F-finite;
3. 'V is excellent;

4. V' is F-regular.

Proof. By Theorem 5.2.5, we know the equivalence among 1, 2 and 3.

Now, we will show that V is F-regular if and only if it is F-finite. Suppose
V' is F-regular. By Theorem 4.4.5, V is F-split. Therefore it is F-finite.
Conversely, by Theorem 5.1.2, F,V is faithfully flat in particular, it is flat.
Hence by Kunz Theorem 4.1.14, V' is regular. Finally, by Theorem 4.4.6, we
have that V' is F-regular. [ |

Remark 5.3.5. We have that the ring of formal series K [x] satisfies The-
orem 5.2.5 if and only if K is F-finite. Moreover, K[z] is F-finite if and
only if K is F-finite. In addition, K[z] is always F-split and F-regular. De-
spite this, it is not a counter-example for Theorem 5.2.5, since this theorem
requieres Frac (K[z]) to be F-finite.

However, not every discrete valuation domain with F-finite fraction field
is F-finite. In order to give an example of this, we first mention a lemma.

Lemma 5.3.6 (| ). Let V' be a valuation domain of an F-finite field K
of prime characteristic p. If V is F-finite, then

T :pl] [k : k] =K : K?]

where T is the valuation group and k the residue field of V.
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Example 5.3.7. Consider FF,((¢)) which is F-finite and the fraction field of
F,[t]. Note that we have a valuation

v:F,t] - Z
t— 1.

which is discrete.
As F, (t) is countable and F,((¢)) is uncountable, there exists a trascendent
element in [F,[¢] transcendental over F, (), namely,

F)=>"ant"

The elements t and f are algebraically independent, so we have the in-
jective map

YTy [z, y] = Fypft]
T =1

y— f

This induces the extension of fields

Fp (2,y) = Fp((2).

We restrict the valuation ¢ to F, (z,y), call it v, which is also discrete.
Let V be the valuation domain associated to v. We have that [L : LP] = p?
and [[', : T'yp] = [['y : pI'y] = p. On the other hand, let u € F, (z,y) with

image in F,((t))
> bt
n=0

If w €V, then v (u) > 0. Therefore, v (u — by) > 0. This is, u ~ by in V/my.
Thus, we have

[k (v) : k()] = [k (v) : k (0)"]

= [F, : F}]
= [F, : )]
=1,

where k (v) is the residue field of V. By Theorem 5.3.6, V' is not F-finite.
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